Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotechnology breakthrough could dramatically improve medical tests

Princeton researchers dramatically improved the sensitivity of immunoassays, a common medical test, using the nanomaterial shown here. The material consists of a series of glass pillars in a layer of gold. Each pillar is speckled on its sides with gold dots and capped with a gold disk. Each pillar is just 60 nanometers in diameter, 1/1,000th the width of a human hair.

Credit: Stephen Chou/Analytical Chemistry
Princeton researchers dramatically improved the sensitivity of immunoassays, a common medical test, using the nanomaterial shown here. The material consists of a series of glass pillars in a layer of gold. Each pillar is speckled on its sides with gold dots and capped with a gold disk. Each pillar is just 60 nanometers in diameter, 1/1,000th the width of a human hair.

Credit: Stephen Chou/Analytical Chemistry

Abstract:
A laboratory test used to detect disease and perform biological research could be made more than 3 million times more sensitive, according to researchers who combined standard biological tools with a breakthrough in nanotechnology.

Nanotechnology breakthrough could dramatically improve medical tests

Princeton, NJ | Posted on June 1st, 2012

The increased performance could greatly improve the early detection of cancer, Alzheimer's disease and other disorders by allowing doctors to detect far lower concentrations of telltale markers than was previously practical.

The breakthrough involves a common biological test called an immunoassay, which mimics the action of the immune system to detect the presence of biomarkers - the chemicals associated with diseases. When biomarkers are present in samples, such as those taken from humans, the immunoassay test produces a fluorescent glow (light) that can be measured in a laboratory. The greater the glow, the more of the biomarker is present. However, if the amount of biomarker is too small, the fluorescent light is too faint to be detected, setting the limit of detection. A major goal in immunoassay research is to improve the detection limit.

The Princeton researchers tackled this limitation by using nanotechnology to greatly amplify the faint fluorescence from a sample. By fashioning glass and gold structures so small they could only be seen with a powerful electron microscope, the scientists were able to drastically increase the fluorescence signal compared to conventional immunoassays, leading to a 3-million-fold improvement in the limit of detection. That is, the enhanced immunoassay would require 3 million times fewer biomarkers to be present compared to a conventional immunoassay. (In technical terms, the researchers measured an improvement in the detection limit from 0.9 nanomolars to 300 attomolars.)

"This advance opens many new and exciting opportunities for immunoassays and other detectors, as well as in disease early detection and treatment," said Stephen Chou, the Joseph C. Elgin Professor of Engineering, who led the research team. "Furthermore, the new assay is very easy to use, since for the person conducting the test, there will be no difference from the old one- they do the procedure in exactly the same way."

The researchers published their results in two recent journal articles. One, published May 10 in Nanotechnology, describes the physics and engineering of the fluorescence-enhancing material. The other, published April 20 in Analytical Chemistry, demonstrates the effect in immunoassays. In addition to Chou, the authors include post-doctoral researchers Weihua Zhang, Liangcheng Zhou and Jonathan Hu and graduate students Fei Ding, Wei Ding, Wen-Di Li and Yuxuan Wang.

The work was funded by the Defense Advanced Research Project Agency and the National Science Foundation.

The key to the breakthrough lies in a new artificial nanomaterial called D2PA, which has been under development in Chou's lab for several years. D2PA is a thin layer of gold nanostructures surrounded glass pillars just 60 nanometers in diameter. (A nanometer is one billionth of a meter; that means about 1,000 of the pillars laid side by side would be as wide as a human hair.) The pillars are spaced 200 nanometers apart and capped with a disk of gold on each pillar. The sides of each pillar are speckled with even tinier gold dots about 10 to 15 nanometers in diameter. In previous work, Chou has shown that this unique structure boosts the collection and transmission of light in unusual ways -- in particular, a 1 billion-fold increase in an effect called surface Raman scattering. The current work now demonstrates a giant signal enhancement with fluorescence.

In a typical immunoassay, a sample such as blood, saliva or urine is taken from a patient and added to small glass vials containing antibodies that are designed to "capture" or bind to biomarkers of interest in the sample. Another set of antibodies that have been labeled with a fluorescent molecule are then added to the mix. If the biomarkers are not present in the vials, the fluorescent detection antibodies do not attach to anything and are washed away. The new technology developed at Princeton allows the fluorescence to be seen when very few antibodies find their mark.

In addition to diagnostic uses, immunoassays are commonly used in drug discovery and other biological research. More generally, fluorescence plays a significant role in other areas of chemistry and engineering, from light-emitting displays to solar energy harvesting, and the D2PA material could find uses in those fields, Chou said.

As next steps in his research, Chou said he is conducting tests to compare the sensitivity of the D2PA-enhanced immunoassay to a conventional immunoassay in detecting breast and prostate cancers. In addition he is collaborating with researchers at Memorial Sloan-Kettering Cancer Center in New York to develop tests to detect proteins associated with Alzheimer's disease at a very early stage.

"You can have very early detection with our approach," he said.

####

For more information, please click here

Contacts:
Steven Schultz

609-258-3617

Copyright © Princeton University, Engineering School

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds October 31st, 2016

Inspiration from the ocean: An interdisciplinary team of researchers at UC Santa Barbara has developed a non-toxic, high-quality surface treatment for organic field-effect transistors October 18th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Discoveries

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Military

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project