Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanotechnology breakthrough could dramatically improve medical tests

Princeton researchers dramatically improved the sensitivity of immunoassays, a common medical test, using the nanomaterial shown here. The material consists of a series of glass pillars in a layer of gold. Each pillar is speckled on its sides with gold dots and capped with a gold disk. Each pillar is just 60 nanometers in diameter, 1/1,000th the width of a human hair.

Credit: Stephen Chou/Analytical Chemistry
Princeton researchers dramatically improved the sensitivity of immunoassays, a common medical test, using the nanomaterial shown here. The material consists of a series of glass pillars in a layer of gold. Each pillar is speckled on its sides with gold dots and capped with a gold disk. Each pillar is just 60 nanometers in diameter, 1/1,000th the width of a human hair.

Credit: Stephen Chou/Analytical Chemistry

Abstract:
A laboratory test used to detect disease and perform biological research could be made more than 3 million times more sensitive, according to researchers who combined standard biological tools with a breakthrough in nanotechnology.

Nanotechnology breakthrough could dramatically improve medical tests

Princeton, NJ | Posted on June 1st, 2012

The increased performance could greatly improve the early detection of cancer, Alzheimer's disease and other disorders by allowing doctors to detect far lower concentrations of telltale markers than was previously practical.

The breakthrough involves a common biological test called an immunoassay, which mimics the action of the immune system to detect the presence of biomarkers - the chemicals associated with diseases. When biomarkers are present in samples, such as those taken from humans, the immunoassay test produces a fluorescent glow (light) that can be measured in a laboratory. The greater the glow, the more of the biomarker is present. However, if the amount of biomarker is too small, the fluorescent light is too faint to be detected, setting the limit of detection. A major goal in immunoassay research is to improve the detection limit.

The Princeton researchers tackled this limitation by using nanotechnology to greatly amplify the faint fluorescence from a sample. By fashioning glass and gold structures so small they could only be seen with a powerful electron microscope, the scientists were able to drastically increase the fluorescence signal compared to conventional immunoassays, leading to a 3-million-fold improvement in the limit of detection. That is, the enhanced immunoassay would require 3 million times fewer biomarkers to be present compared to a conventional immunoassay. (In technical terms, the researchers measured an improvement in the detection limit from 0.9 nanomolars to 300 attomolars.)

"This advance opens many new and exciting opportunities for immunoassays and other detectors, as well as in disease early detection and treatment," said Stephen Chou, the Joseph C. Elgin Professor of Engineering, who led the research team. "Furthermore, the new assay is very easy to use, since for the person conducting the test, there will be no difference from the old one- they do the procedure in exactly the same way."

The researchers published their results in two recent journal articles. One, published May 10 in Nanotechnology, describes the physics and engineering of the fluorescence-enhancing material. The other, published April 20 in Analytical Chemistry, demonstrates the effect in immunoassays. In addition to Chou, the authors include post-doctoral researchers Weihua Zhang, Liangcheng Zhou and Jonathan Hu and graduate students Fei Ding, Wei Ding, Wen-Di Li and Yuxuan Wang.

The work was funded by the Defense Advanced Research Project Agency and the National Science Foundation.

The key to the breakthrough lies in a new artificial nanomaterial called D2PA, which has been under development in Chou's lab for several years. D2PA is a thin layer of gold nanostructures surrounded glass pillars just 60 nanometers in diameter. (A nanometer is one billionth of a meter; that means about 1,000 of the pillars laid side by side would be as wide as a human hair.) The pillars are spaced 200 nanometers apart and capped with a disk of gold on each pillar. The sides of each pillar are speckled with even tinier gold dots about 10 to 15 nanometers in diameter. In previous work, Chou has shown that this unique structure boosts the collection and transmission of light in unusual ways -- in particular, a 1 billion-fold increase in an effect called surface Raman scattering. The current work now demonstrates a giant signal enhancement with fluorescence.

In a typical immunoassay, a sample such as blood, saliva or urine is taken from a patient and added to small glass vials containing antibodies that are designed to "capture" or bind to biomarkers of interest in the sample. Another set of antibodies that have been labeled with a fluorescent molecule are then added to the mix. If the biomarkers are not present in the vials, the fluorescent detection antibodies do not attach to anything and are washed away. The new technology developed at Princeton allows the fluorescence to be seen when very few antibodies find their mark.

In addition to diagnostic uses, immunoassays are commonly used in drug discovery and other biological research. More generally, fluorescence plays a significant role in other areas of chemistry and engineering, from light-emitting displays to solar energy harvesting, and the D2PA material could find uses in those fields, Chou said.

As next steps in his research, Chou said he is conducting tests to compare the sensitivity of the D2PA-enhanced immunoassay to a conventional immunoassay in detecting breast and prostate cancers. In addition he is collaborating with researchers at Memorial Sloan-Kettering Cancer Center in New York to develop tests to detect proteins associated with Alzheimer's disease at a very early stage.

"You can have very early detection with our approach," he said.

####

For more information, please click here

Contacts:
Steven Schultz

609-258-3617

Copyright © Princeton University, Engineering School

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Nanomedicine

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Discoveries

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Announcements

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Military

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Rebar technique strengthens case for graphene: Rice University lab makes hybrid nanotube-graphene material that promises to simplify manufacturing April 7th, 2014

Energy

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Nanobiotechnology

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Solar/Photovoltaic

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Shiny quantum dots brighten future of solar cells: Photovoltaic solar-panel windows could be next for your house April 14th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE