Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > JEOL Introduces Ultra-high Resolution Analytical Field Emission SEM: Highest performance FE-SEM optimized for sub-nm resolution imaging of any type of sample

JEOL JSM-7800F Ultra-High Resolution Analytical FE SEM
JEOL JSM-7800F Ultra-High Resolution Analytical FE SEM

Abstract:
JEOL's new series of field emission scanning electron microscopes is now complete with the introduction of the sub-nanometer imaging resolution JSM-7800F. The JSM-7800F represents a significant leap forward in Field Emission SEM technology, with unmatched resolution and stability for nanotechnology imaging and analysis.

JEOL Introduces Ultra-high Resolution Analytical Field Emission SEM: Highest performance FE-SEM optimized for sub-nm resolution imaging of any type of sample

Peabody, MA | Posted on May 31st, 2012

JEOL's highest performance FE-SEM makes it possible to:

- observe the finest structural morphology of nanomaterials at 1,000,000X magnification with sub-1nm resolution

- perform low kV imaging and analysis of highly magnetic samples.

- collect large area EBSD maps at low magnifications without distortion

- image thin, electron transparent samples with sub 0.8 nm resolution using an optional retractable STEM detector

"JEOL now offers a full line of analytical, high performance electron microscopes to fit every technical performance requirement and budget," said Vern Robertson, SEM Technical Sales Manager at JEOL USA.

Optimized for extreme imaging and analysis

The JSM-7800F uniquely combines an in-lens field emission gun with an aperture angle control lens (ACL), optimizing large probe currents (up to 200 nA) for operation at the smallest probe diameter. The new super hybrid lens design and versatile in-column detectors with filtering capabilities allow observation of any specimen, especially at ultra-low accelerating voltages down to 10V. The SEM excels at low accelerating voltage X-ray spectroscopy and cathodoluminescence, combining large beam currents with a small interaction volume and dramatically increasing analytical resolution to the sub 100nm scale. Beam deceleration in GB Mode decreases charging on nonconductive samples and reduces lens aberration effects for extreme high resolution imaging.

Ultimate versatility

The JSM-7800F is suitable for a wide variety of applications, from cryo-microscopy to electron beam lithography, and can be configured for low vacuum operation. It accommodates multiple analytical attachments, including EDS, WDS, STEM, BSE, CL, EBIC, and an IR camera and stage navigation camera. The SEM comes with a choice of three stage sizes and three specimen exchange airlock sizes. It can also be equipped with tensile, heating, and cooling stages for in situ experiments.

www.jeolusa.com/PRODUCTS/ElectronOptics/ScanningElectronMicroscopesSEM/FESEM/JSM7800F/tabid/869/Default.aspx

####

About JEOL USA, Inc.
JEOL is a world leader in electron optical equipment and instrumentation for high-end scientific and industrial research and development. Core product groups include electron microscopes (SEMs and TEMs), instruments for the semiconductor industry (electron beam lithography and a series of defect review and inspection tools), and analytical instruments including mass spectrometers, NMRs and ESRs.

JEOL USA, Inc., a wholly owned subsidiary of JEOL, Ltd., Japan, was incorporated in the United States in 1962. The company has 13 regional service centers that offer unlimited emergency service and support in the U.S.

For more information, please click here

Contacts:
JEOL USA, Inc.

11 Dearborn Road

Peabody, MA 01960

978-535-5900

Copyright © JEOL USA, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Imaging

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Tools

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Stress-free ALD from Picosun August 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project