Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Coatings with nanoparticles that interact with sunlight and eliminate contaminants are developed

Abstract:
Researchers of the UPNA-Public University of Navarre have developed a type of coating for construction materials. It is based on nanoparticles that interact with sunlight and trigger a chemical reaction that eliminates certain air pollutants. It is reckoned that the reduction in atmospheric pollution could be 90% of nitrogen oxides, 80% of hydrocarbons, and 75% of carbon monoxides emitted. These coatings are the final result of the Ecofotomat project in which the L'Urederra R+D Centre and the construction company Obras y Servicios TEX S.L. have participated together with the University.

Coatings with nanoparticles that interact with sunlight and eliminate contaminants are developed

Spain | Posted on May 30th, 2012

As the researcher Javier Goicoechea explains, the coatings "have special nanoparticles with a photocatalytic effect; the nanoparticles interact with the light, thus triggering a series of chemical reactions that clean the air and break down the dirt". In this project, work is being done with concrete as the basic construction material. L'Urederra manufactures the nanoparticles and adapts them so that they can be incorporated into the coatings, and the company TEX provides the concrete and the technical specifications on the building material, since the final aim of the project is to obtain a marketable product: "There are ceramics that have these types of coatings, but here we are working with concrete and with liquid solutions, because we want the final coating to resemble a paint as much as possible: one that can be applied on site, has a cost that is not too high, and is sufficiently tough to withstand the elements."

In Goicoechea's view, "the good thing is that we are talking about very thin coatings of less than a micron (a millionth part of a metre) and which adapt very well to the profile of the material. For example, concrete is always very porous and this coating will cause the whole porous surface to become active when the sunlight hits it." What is more, the coating is also capable of degrading certain chemical compounds that become attached to the surface, and that way the spread of bacteria, fungi, etc. is hampered.
Toughness and testing

As regards toughness, the coating consists of an inorganic material. "This is not like when one speaks about coatings with an antibacterial agent that is gradually released, and the moment comes when it runs out, and consequently stops working," explains the researcher. What we are talking about here is a material that has a built-in property: when the sunlight hits it, it produces free radicals on its surface that attack the air pollutants, specifically the monoxides and the nitrogen oxides. What we need to come up with is a matrix that is tough and permanent enough to immobilise those nanoparticles on the surface and which ensures that the coating remains in place; and all that at an affordable cost."

The UPNA's team of researchers who have worked on the project is made up of Pedro Rivero, chemist; Natxo Matías and Miguel Hernáez, telecommunications engineers; and Patxi Arregui and Javier Goicoechea, industrial engineers. As they did not have a laboratory available to measure the reduction in gases, they conducted a standard test consisting of applying a bluish ink onto the surface of the concrete to which the coating was then applied. "When the concrete is exposed to the light, it is possible to see how the ink is destroyed on the area treated with the coating while remaining virtually intact on the remaining surface. When the ink is broken down, we can estimate that when the light hits the surface, the coating acts and breaks down all the pollutants present in the air in the form of compounds attached to it," they said.

Ecofotomat has been partly funded by the Spanish Ministry for the Economy and Competitiveness and by the European Regional Development Fund. The execution period is due to end in June 2013 even though the work of the UPNA researchers in the project has already finished. This project comes within the framework of the INNPACTO programme called by the Ministry to encourage the setting up of projects in which research bodies and companies co-operate. Specifically, the aim is to jointly run R+D+i projects that encourage innovative activity, mobilise private investment and create jobs.

"What would be ideal would be a second phase of this project to be able to go further," concludes Javier Goicoechea. Our work has consisted of developing different matrices that would be cheap and tough, because in construction we are always talking about very low margins, reduced costs and guarantees of twenty to thirty years. What we need, for example, is a complete façade to which the coating can be applied to see how it works, although if we want to see genuine ageing, time would have to elapse or we would have to carry out some kind of accelerated life test to see which of the coatings keeps going the longest and, perhaps, which coating is the most suited to a more or less extreme climate.

####

For more information, please click here

Contacts:
Aitziber Lasa Iglesias

34-943-363-040

Victoria Alfonso Seminario
Universidad Pública de Navarra

Contact details:

(+34) 948168457

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project