Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > University of Florida physicists set new record for graphene solar cell efficiency

Abstract:
Doping may be a no-no for athletes, but researchers in the University of Florida's physics department say it was key in getting unprecedented power conversion efficiency from a new graphene solar cell created in their lab.

University of Florida physicists set new record for graphene solar cell efficiency

Gainesville, FL | Posted on May 24th, 2012

Graphene solar cells are one of industry's great hopes for cheaper, durable solar power cells in the future. But previous attempts to use graphene, a single-atom-thick honeycomb lattice of carbon atoms, in solar cells have only managed power conversion efficiencies ranging up to 2.9 percent. The UF team was able to achieve a record breaking 8.6 percent efficiency with their device by chemically treating, or doping, the graphene with trifluoromethanesulfonyl-amide, or TFSA. Their results are published in the current online edition of Nano Letters.

"The dopant makes the graphene film more conductive and increases the electric field potential inside the cell," said Xiaochang Miao, a graduate student in the physics department. That makes it more efficient at converting sunlight into electricity. And unlike other dopants that have been tried in the past, TFSA is stable — its effects are long lasting.

The solar cell that Miao and her co-workers created in the lab looks like a 5-mm-square window framed in gold. The window, a wafer of silicon coated with a monolayer of graphene, is where the magic happens.

Graphene and silicon, when they come together, form what is called a Schottky junction — a one-way street for electrons that when illuminated with light, acts as the power conversion zone for an entire class of solar cells. Schottky junctions are commonly formed by layering a metal on top of a semiconductor. But researchers at the UF Nanoscience Institute for Medical and Engineering Technologies discovered in 2011 that graphene, a semi-metal, made a suitable substitute for metal in creating the junction.

"Graphene, unlike conventional metals, is transparent and flexible, so it has great potential to be an important component in the kind of solar cells we hope to see incorporated into building exteriors and other materials in the future," said Arthur Hebard, distinguished professor of physics at UF and co-author on the paper. "Showing that its power-converting capabilities can be enhanced by such a simple, inexpensive treatment bodes well for its future."

The researchers said that if graphene solar cells reach 10 percent power conversion efficiency they could be a contender in the market place, if production costs are kept low enough.

The prototype solar cell created in the UF lab was built on a rigid base of silicon, which is not considered an economical material for mass production. But Hebard said that he sees real possibilities for combining the use of doped graphene with less expensive, more flexible substrates like the polymer sheets currently under development in research laboratories around the world.

####

For more information, please click here

Contacts:
Writer:
Donna Hesterman

352-846-2573

Source:
Arthur Hebard

352-222-6212

Xiaochang Miao

352-871-4116

Copyright © University of Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Graphene/ Graphite

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Solar/Photovoltaic

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project