Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Two-Dimensional Layered Materials for High-Performance Electronics

Abstract:
Graphene is the wonder material that could solve the problem of making ever faster computers and smaller mobile devices when current silicon microchip technology hits an inevitable wall. Graphene, a single layer of carbon atoms in a tight hexagonal arrangement, is a highly researched material due to its incredible electronic properties, with theoretical speeds 100 times greater than silicon. But putting the material into a microchip that could outperform current silicon technology has proven difficult.

Two-Dimensional Layered Materials for High-Performance Electronics

University Park, PA | Posted on May 23rd, 2012

The answer may lie in new nanoscale systems based on ultrathin layers of materials with exotic properties. Called two-dimensional layered materials, these systems could be important for microelectronics, various types of hypersensitive sensors, catalysis, tissue engineering and energy storage. Researchers at Penn State have applied one such 2D layered material, a combination of graphene and hexagonal boron nitride, to produce improved transistor performance at an industrially relevant scale.

"Other groups have shown that graphene on boron nitride can improve performance two to three times, but not in a way that could be scaled up. For the first time, we have been able to take this material and apply it to make transistors at wafer scale," says Joshua Robinson, assistant professor of materials science and engineering at Penn State and the corresponding author on a paper reporting their work in the online version of the journal ACS Nano.

In the article, the Penn State team describes a method for integrating a thin layer of graphene only one or two atoms thick, with a second layer of hexagonal boron nitride (hBN) with a thickness of a few atoms up to several hundred atoms. The resulting bilayer material constitutes the next step in creating functional graphene field effect transistors for high frequency electronic and optoelectronic devices.

Previous research by other groups has shown that a common material called hexagonal boron nitride (hBN), a synthetic mixture of boron and nitrogen that is used as an industrial lubricant and is found in many cosmetics, is a potential replacement for silicon dioxide and other high-performance dielectrics that have failed to integrate well with graphene. Because boron sits next to carbon on the periodic table, and hexagonal boron nitride has a similar arrangement of atoms as graphene, the two materials match up well electronically. In fact, hBN is often referred to as white graphene. To be of more than academic interest in the lab, however, the hBN-graphene bilayer had to be grown at wafer scale - from around 3 inches (75 mm) to almost 12 inches (300 mm).

The Penn State team solved this problem by using a prior technique developed in their lab to produce a uniform, large-area, and high quality layer of epitaxial graphene suitable for high frequency applications. This "quasi-freestanding epitaxial graphene" was produced by attaching hydrogen atoms to the graphene in order to "passivate dangling bonds," essentially flattening and smoothing the graphene film. The hexagonal boron nitride was then grown on a transition metal substrate using a chemical vapor deposition technique that is standard in manufacturing. The hBN was released from the substrate via one of several transfer processes and layered on top of the graphene on a 75mm wafer, marking the first integration of epitaxial graphene with hBN on a scale compatible with industry needs.

Building on their earlier work with epitaxial graphene, which had already increased transistor performance by 2-3 times, this research adds a further 2-3x improvement in performance and shows the strong potential for utilizing graphene in electronics, according to Robinson. In the near future, the Penn State team hopes to demonstrate graphene based integrated circuits and high-performance devices suitable for industrial-scale manufacturing on 100mm wafers.

"We use all standard lithography, which is important for nanomanufacturing," Robinson adds. In order to make a dent in the highly competitive microchip industry, a new material system needs to be compatible with current processing technology as well as offer a significant performance boost.

Boron nitride-graphene is one of several up-and-coming two-dimensional layered systems whose nanoscale properties are only beginning to be discovered. Dimensionality, according to Nobel Laureates Novoselov and Geim, is one of the most defining material parameters and can give rise to dramatically different properties according to whether the material structure is 0D, 1D, 2D, or 3D. Penn State is among the pioneers moving into what may prove to be a new frontier of materials science.

In addition to Robinson, the co-authors on the ACS Nano article are Michael Bresnehan, Matthew Hollander, Maxwell Wetherington, Michael LaBella, Kathleen Trumbull, Randal Cavalero, and David Snyder, all of Penn State. The work was supported by the Naval Surface Warfare Center Crane, and instrumentation support was provided by the National Nanotechnology Infrastructure Network at Penn State. "Integration of Hexagonal Boron Nitride with Quasi-freestanding Epitaxial Graphene: Toward Wafer-Scale High-Performance Devices" was published in online in the April 28, 2012, ASAP (as soon as publishable) edition of ACS Nano. Contact Joshua Robinson at .

####

For more information, please click here

Contacts:
Joshua Robinson

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene/ Graphite

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

News and information

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Chemistry

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Chip Technology

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Nanomedicine

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Nanotubes that build themselves April 14th, 2017

Emergency Use Authorization for Gene-RADAR® Zika Virus Test: FDA Authorization for the Gene-RADAR® Zika Virus Test on the XPRIZE-Winning Gene-RADAR® Platform April 14th, 2017

Sensors

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Discoveries

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Announcements

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Bio-inspired energy storage: A new light for solar power: Graphene-based electrode prototype, inspired by fern leaves, could be the answer to solar energy storage challenge April 2nd, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project