Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Two-Dimensional Layered Materials for High-Performance Electronics

Abstract:
Graphene is the wonder material that could solve the problem of making ever faster computers and smaller mobile devices when current silicon microchip technology hits an inevitable wall. Graphene, a single layer of carbon atoms in a tight hexagonal arrangement, is a highly researched material due to its incredible electronic properties, with theoretical speeds 100 times greater than silicon. But putting the material into a microchip that could outperform current silicon technology has proven difficult.

Two-Dimensional Layered Materials for High-Performance Electronics

University Park, PA | Posted on May 23rd, 2012

The answer may lie in new nanoscale systems based on ultrathin layers of materials with exotic properties. Called two-dimensional layered materials, these systems could be important for microelectronics, various types of hypersensitive sensors, catalysis, tissue engineering and energy storage. Researchers at Penn State have applied one such 2D layered material, a combination of graphene and hexagonal boron nitride, to produce improved transistor performance at an industrially relevant scale.

"Other groups have shown that graphene on boron nitride can improve performance two to three times, but not in a way that could be scaled up. For the first time, we have been able to take this material and apply it to make transistors at wafer scale," says Joshua Robinson, assistant professor of materials science and engineering at Penn State and the corresponding author on a paper reporting their work in the online version of the journal ACS Nano.

In the article, the Penn State team describes a method for integrating a thin layer of graphene only one or two atoms thick, with a second layer of hexagonal boron nitride (hBN) with a thickness of a few atoms up to several hundred atoms. The resulting bilayer material constitutes the next step in creating functional graphene field effect transistors for high frequency electronic and optoelectronic devices.

Previous research by other groups has shown that a common material called hexagonal boron nitride (hBN), a synthetic mixture of boron and nitrogen that is used as an industrial lubricant and is found in many cosmetics, is a potential replacement for silicon dioxide and other high-performance dielectrics that have failed to integrate well with graphene. Because boron sits next to carbon on the periodic table, and hexagonal boron nitride has a similar arrangement of atoms as graphene, the two materials match up well electronically. In fact, hBN is often referred to as white graphene. To be of more than academic interest in the lab, however, the hBN-graphene bilayer had to be grown at wafer scale - from around 3 inches (75 mm) to almost 12 inches (300 mm).

The Penn State team solved this problem by using a prior technique developed in their lab to produce a uniform, large-area, and high quality layer of epitaxial graphene suitable for high frequency applications. This "quasi-freestanding epitaxial graphene" was produced by attaching hydrogen atoms to the graphene in order to "passivate dangling bonds," essentially flattening and smoothing the graphene film. The hexagonal boron nitride was then grown on a transition metal substrate using a chemical vapor deposition technique that is standard in manufacturing. The hBN was released from the substrate via one of several transfer processes and layered on top of the graphene on a 75mm wafer, marking the first integration of epitaxial graphene with hBN on a scale compatible with industry needs.

Building on their earlier work with epitaxial graphene, which had already increased transistor performance by 2-3 times, this research adds a further 2-3x improvement in performance and shows the strong potential for utilizing graphene in electronics, according to Robinson. In the near future, the Penn State team hopes to demonstrate graphene based integrated circuits and high-performance devices suitable for industrial-scale manufacturing on 100mm wafers.

"We use all standard lithography, which is important for nanomanufacturing," Robinson adds. In order to make a dent in the highly competitive microchip industry, a new material system needs to be compatible with current processing technology as well as offer a significant performance boost.

Boron nitride-graphene is one of several up-and-coming two-dimensional layered systems whose nanoscale properties are only beginning to be discovered. Dimensionality, according to Nobel Laureates Novoselov and Geim, is one of the most defining material parameters and can give rise to dramatically different properties according to whether the material structure is 0D, 1D, 2D, or 3D. Penn State is among the pioneers moving into what may prove to be a new frontier of materials science.

In addition to Robinson, the co-authors on the ACS Nano article are Michael Bresnehan, Matthew Hollander, Maxwell Wetherington, Michael LaBella, Kathleen Trumbull, Randal Cavalero, and David Snyder, all of Penn State. The work was supported by the Naval Surface Warfare Center Crane, and instrumentation support was provided by the National Nanotechnology Infrastructure Network at Penn State. "Integration of Hexagonal Boron Nitride with Quasi-freestanding Epitaxial Graphene: Toward Wafer-Scale High-Performance Devices" was published in online in the April 28, 2012, ASAP (as soon as publishable) edition of ACS Nano. Contact Joshua Robinson at .

####

For more information, please click here

Contacts:
Joshua Robinson

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Chemistry

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

Graphene/ Graphite

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Graphene sheets capture cells efficiently: New method could enable pinpoint diagnostics on individual blood cells March 3rd, 2017

Chip Technology

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nanomedicine

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Biophysicists propose new approach for membrane protein crystallization March 8th, 2017

Sensors

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

New optical nanosensor improves brain mapping accuracy, opens way for more applications: Potassium-sensitive fluorescence-imaging method shines light on chemical activity within the brain March 3rd, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Discoveries

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Announcements

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New nanofiber marks important step in next generation battery development March 14th, 2017

Imaging the inner workings of a sodium-metal sulfide battery for first time: Understanding how the structural and chemical makeup of the material changes during the charge/discharge process could help scientists advance battery design for future energy storage needs March 9th, 2017

Tweaking electrolyte makes better lithium-metal batteries: A pinch of electrolyte additive gives rechargeable battery stability, longer life March 2nd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project