Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Washington University receives $3 million to design cancer-killing viruses

Igor Dmitriev, PhD

The illustration shows an adenovirus particle carrying metals and antibodies for cancer therapy. In this case, the metal is copper-64, a radioactive metal useful for both imaging and cancer therapy. Antibodies shown in orange and purple can target the virus to specific tissues or tumor types.
Igor Dmitriev, PhD

The illustration shows an adenovirus particle carrying metals and antibodies for cancer therapy. In this case, the metal is copper-64, a radioactive metal useful for both imaging and cancer therapy. Antibodies shown in orange and purple can target the virus to specific tissues or tumor types.

Abstract:
Researchers at Washington University School of Medicine in St. Louis have received a $3 million grant from the National Cancer Institute (NCI) to develop a triple threat in the fight against cancer: a single virus equipped to find, image and kill cancer cells, all at once.

Washington University receives $3 million to design cancer-killing viruses

St. Louis, MO | Posted on May 22nd, 2012

Led by David T. Curiel, MD, PhD, Distinguished Professor of Radiation Oncology, the program will build on his group's expertise with adenovirus, a virus that causes the common cold and has shown promise in cancer therapeutics and imaging.
"This is a virus that we know a lot about," says Curiel, director of the Biologic Therapeutics Center at Washington University. "Our research seeks ways to use the virus like a nanoparticle and capitalize on all the unique capacities of the virus and our ability to manipulate it."

Developing a three-pronged attack on cancer cells is in line with the NCI's pursuit of a new paradigm in cancer research. Known as theragnostics, the concept is to combine therapy and diagnostics into one targeted attack on a specific cancer.

"We would like to understand the patient's biology and direct therapy on that basis," Curiel says. "And ideally, such a personalized treatment agent should include everything you would want it to do — it would be targeted specifically to the cancer and avoid healthy cells, it would deliver therapeutic drugs, and it would have a method to image the tumor to monitor the outcome of therapy."

According to Curiel, there is a focus on nanoparticles in this three-part theragnostic tool. Similar in size to viruses, nanoparticles are also heavily studied for their anti-cancer possibilities. But Curiel argues that viruses have some advantages over nanoparticles. Unlike nanoparticles that serve only as passive carriers, viruses have DNA, which offers another layer of cancer fighting or imaging potential.

"With a virus, we can alter its genes so that it expresses a protein that could be used against the cancer, or a protein that might enable us to image the tumor," Curiel says.

And like a nanoparticle, a virus can be modified to carry different molecules, drugs and metals on its surface. Previous work by Curiel and others has identified certain proteins that would target the virus to specific tissues in the body and even specific tumor types.

In addition to targeting, Curiel and his collaborators at Louisiana State University have developed a novel way to attach heavy metals to the surface of viruses so they are visible to non-invasive X-ray imaging. In a study published in PLoS ONE last year, they demonstrated the ability to use CT scans to track the location of these metal-carrying viruses in mice.

Beyond imaging, the metal-binding viruses could also carry radioactive metals that deliver radiation therapy directly to the cancer cells while sparing healthy ones.

"Within the cancer world, this idea of theragnostics is something of a holy grail," Curiel says. "It's an idea that has preceded the technology. With this grant, we hope to make inroads in developing a cancer therapeutic that accomplishes all of these targeting, treating and imaging goals."

The grant "Targeted- and Image-Based Adenovirus Cancer Therapeutic Vectors" is supported by the National Cancer Institute (NCI), part of the National Institutes of Health (NIH). Grant 1R01CA154697-01A1.

Mathis JM, Bhatia S, Khandelwal A, Kovesdi I, Lokitz SJ, Odaka Y, Takalkar AM, Terry T, Curiel DT. Genetic incorporation of human metallothionein into the adenovirus protein IX for non-invasive SPECT imaging. PLoS ONE. February 2011.

####

About Washington University
Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

For more information, please click here

Contacts:
Julia Evangelou Strait
Senior Medical Sciences Writer
(314) 286-0141

Copyright © Washington University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Imaging

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Nanomedicine

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

IDTechEx Printed Electronics Europe 2014 Award Winners April 1st, 2014

Dais Analytic Wins SBIR Grant: Dais Analytic Receives US Army Small Business Innovation Research Grant to Further Its Demonstrated Successes in Cleaning Most Forms of Wastewater March 28th, 2014

Scientists develop world’s first light-activated antimicrobial surface that also works in the dark March 24th, 2014

Research partnerships

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Carbon nanotubes grow in combustion flames April 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE