Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cloak and swagger: Engineers use plasmonics to create an invisible photodetector

An image showing light scattering from a silicon nanowire running diagonally from bottom left to top right. The brighter areas are bare silicon while the dimmer sections are coated with gold demonstrating how plasmonic cloaking reduces light scattering in the gold-coated sections. Photo: Stanford Nanocharacterization Lab.
An image showing light scattering from a silicon nanowire running diagonally from bottom left to top right. The brighter areas are bare silicon while the dimmer sections are coated with gold demonstrating how plasmonic cloaking reduces light scattering in the gold-coated sections.

Photo: Stanford Nanocharacterization Lab.

Abstract:
A team of engineers at Stanford and the University of Pennsylvania has for the first time used "plasmonic cloaking" to create a device that can see without being seen - an invisible machine that detects light. It is the first example of what the researchers describe as a new class of devices that controls the flow of light at the nanoscale to produce both optical and electronic functions.

Cloak and swagger: Engineers use plasmonics to create an invisible photodetector

Stanford, CA | Posted on May 21st, 2012

It may not be intuitive, but a coating of reflective metal can actually make something less visible, engineers at Stanford and UPenn have shown. They have created an invisible, light-detecting device that can "see without being seen."

At the heart of the device are silicon nanowires covered by a thin cap of gold. By adjusting the ratio of metal to silicon - a technique the engineers refer to as tuning the geometries - they capitalize on favorable nanoscale physics in which the reflected light from the two materials cancel each other to make the device invisible.

Pengyu Fan is the lead author of a paper demonstrating the new device published online May 20th in the journal Nature Photonics. He is a doctoral candidate in materials science and engineering at Stanford University working in Professor Mark Brongersma's group. Brongersma is senior author of the study.

Cloak of invisiblity

Light detection is well known and relatively simple. Silicon generates electrical current when illuminated and is common in solar panels and light sensors today. The Stanford device, however, is a departure in that for the first time it uses a relatively new concept known as plasmonic cloaking to render the device invisible.

The field of plasmonics studies how light interacts with metal nanostructures and induces tiny oscillating electrical currents along the surfaces of the metal and the semiconductor. These currents, in turn, produce scattered light waves.

By carefully designing their device - by tuning the geometries - the engineers have created a plasmonic cloak in which the scattered light from the metal and semiconductor cancel each other perfectly through a phenomenon known as destructive interference.

The rippling light waves in the metal and semiconductor create a separation of positive and negative charges in the materials - a dipole moment, in technical terms. The key is to create a dipole in the gold that is equal in strength but opposite in sign to the dipole in the silicon. When equally strong positive and negative dipoles meet, they cancel each other and the system becomes invisible.

"We found that a carefully engineered gold shell dramatically alters the optical response of the silicon nanowire," said Fan. "Light absorption in the wire drops slightly - by a factor of just four - but the scattering of light drops by 100 times due to the cloaking effect, becoming invisible."

"It seems counterintuitive," said Brongersma, "but you can cover a semiconductor with metal - even one as reflective as gold - and still have the light get through to the silicon. As we show, the metal not only allows the light to reach the silicon where we can detect the current generated, but it makes the wire invisible, too."

Broadly effective

The engineers have shown that plasmonic cloaking is effective across much of the visible spectrum of light and that the effect works regardless of the angle of incoming light or the shape and placement of the metal-covered nanowires in the device. They likewise demonstrate that other metals commonly used in computer chips, like aluminum and copper, work just as well as gold.

To produce invisibility, what matters above all is the tuning of metal and semiconductor.

"If the dipoles do not align properly, the cloaking effect is lessened, or even lost," said Fan. "Having the right amount of materials at the nanoscale, therefore, is key to producing the greatest degree of cloaking."

In the future, the engineers foresee application for such tunable, metal-semiconductor devices in many relevant areas, including solar cells, sensors, solid-state lighting, chip-scale lasers, and more.

In digital cameras and advanced imaging systems, for instance, plasmonically cloaked pixels might reduce the disruptive cross-talk between neighboring pixels that produces blur. It could therefore lead to sharper, more accurate photos and medical images.

"We can even imagine reengineering existing opto-electronic devices to incorporate valuable new functions and to achieve sensor densities not possible today," concluded Brongersma. "There are many emerging opportunities for these photonic building blocks."

Brongersma lab alumnus Professor Linyou Cao and doctoral candidate Farzaneh Afshinmanesh contributed to this research. This work is a collaboration with Professor Nader Engheta and post-doctoral researcher Uday Chettiar from University of Pennsylvania.

By Andrew Myers

Andrew Myers is associate director of communications for the Stanford University School of Engineering.

####

For more information, please click here

Contacts:
Andrew Myers
Associate Director of Communications
650.736.2245


Jamie Beckett
Director of Communications and Alumni Relations
650.736.2241

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Chip Technology

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Discoveries

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Energy

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Photonics/Optics/Lasers

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Research partnerships

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Solar/Photovoltaic

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE