Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Faster, better, cheaper: UD scientist attempts to grow nanocomposites faster using novel approach

Joshua Zide (right), assistant professor of materials science and engineering, at work in the laboratory with Pernell Dongmo, a doctoral candidate in the College of Engineering.
Photo by Kathy F. Atkinson
Joshua Zide (right), assistant professor of materials science and engineering, at work in the laboratory with Pernell Dongmo, a doctoral candidate in the College of Engineering.

Photo by Kathy F. Atkinson

Abstract:
Joshua Zide, assistant professor of materials science and engineering at the University of Delaware, has spent nearly a decade engineering nanomaterials using a technique called molecular beam epitaxy (MBE).

Faster, better, cheaper: UD scientist attempts to grow nanocomposites faster using novel approach

Newark, DE | Posted on May 17th, 2012

In his research, Zide makes a class of materials called nanocomposites that consist of metallic nanoparticles within a semi-conductor. These nanocomposites can be used in electronic devices such as transistors or in energy conversion devices such as solar cells or thermoelectrics. Typically, these devices are made of semiconductors like silicon or gallium arsenide.

While MBE produces nanoscale materials with exquisite control, the technique is slow and expensive. It also doesn't scale well for industrial applications and it isn't flexible in allowing the addition of new materials.

Zide will attempt to grow nanoscale materials in a new way through a 2012 Department of Energy Early Career Research grant from the Office of Basic Energy Sciences. One of only 68 individuals selected from a pool of nearly 850 applicants, the award will provide Zide $750,000 in research funding over five years.

Under the grant, Zide will explore the use of liquid phase epitaxy (LPE) to make nanocomposites for thermoelectrics, which are devices for generating electrical energy from heat. The work shows potential for transitioning these promising materials from the laboratory to the factory, allowing production of innovative electronic, optoelectronic and energy conversion devices.

"People have used LPE many times to make semiconductors. What we're doing is making the same kinds of nanocomposites using a hybrid approach that also employs inert gas condensation," he said.

The research team will first make the metal nanoparticles in the laboratory via inert gas condensation and then use the nanoparticles to grow materials by LPE. According to Zide, combining these two well-established, inexpensive techniques in a new way opens the door to making this class of materials in a commercially viable and scalable way.

"Instead of growing nanomaterials at one micron per hour, which is much slower than grass grows, LPE will enable us to grow nanomaterials at one micron per minute," Zide said.

"We think this could lead to a faster, better, cheaper way of making a class of nanocomposite materials with pretty exciting applications," he added.

Separating the production of the nanoparticles from the production of the film also increases the materials flexibility and enables it to be changed in ways not possible by MBE. In principle, Zide said the technique could also be applied to other materials systems, enabling researchers to combine more dissimilar materials in electronic nanocomposites.

During the project, he will collaborate and share equipment with materials science and engineering colleagues Ismat Shah, whose expertise lies in making nanoparticles via inert gas condensation, and Robert Opila, whose expertise lies in LPE.

Two graduate students will also participate in the project. One student will focus on creating the nanoparticles and the other will incorporate the nanoparticles into the films designed in Zide's laboratory and to study the materials' characterization and properties.

"This long-term funding will enable me to lead my research in an entirely new direction," Zide said.

About the award

The U.S. Department of Energy Early Career Research Program aims to strengthen the nation's scientific workforce. The five-year awards are designed to support exceptional researchers during their early career years, when many scientists do their most seminal work.

Now in its third year, the program also aims to providing incentives for scientists to focus on research areas important to the Department of Energy including advanced scientific computing research, biological and environmental research, basic energy sciences, fusion energy sciences, high-energy physics and nuclear physics.

About the professor

Joshua Zide joined UD in 2007 as an assistant professor in electrical engineering with a joint appointment in mechanical engineering. He joined the materials science and engineering faculty in 2009.

Zide earned his doctoral degree in materials from the University of California Santa Barbara in 2007 and his bachelor's degree with distinction in materials science and engineering from Stanford University in 2002.

Article by Karen B. Roberts

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Thin films

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Nanomechanics Inc. President Warren Oliver, PhD to Present at ICMCTF: Nanoindentation experts will discuss new testing system that measures the interaction of two objects that are sliding across each other – not merely making contact April 17th, 2017

Bio-inspired energy storage: A new light for solar power: Graphene-based electrode prototype, inspired by fern leaves, could be the answer to solar energy storage challenge April 2nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Chip Technology

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Discoveries

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Materials/Metamaterials

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

Announcements

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Energy

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

Solar/Photovoltaic

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project