Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Faster, better, cheaper: UD scientist attempts to grow nanocomposites faster using novel approach

Joshua Zide (right), assistant professor of materials science and engineering, at work in the laboratory with Pernell Dongmo, a doctoral candidate in the College of Engineering.
Photo by Kathy F. Atkinson
Joshua Zide (right), assistant professor of materials science and engineering, at work in the laboratory with Pernell Dongmo, a doctoral candidate in the College of Engineering.

Photo by Kathy F. Atkinson

Abstract:
Joshua Zide, assistant professor of materials science and engineering at the University of Delaware, has spent nearly a decade engineering nanomaterials using a technique called molecular beam epitaxy (MBE).

Faster, better, cheaper: UD scientist attempts to grow nanocomposites faster using novel approach

Newark, DE | Posted on May 17th, 2012

In his research, Zide makes a class of materials called nanocomposites that consist of metallic nanoparticles within a semi-conductor. These nanocomposites can be used in electronic devices such as transistors or in energy conversion devices such as solar cells or thermoelectrics. Typically, these devices are made of semiconductors like silicon or gallium arsenide.

While MBE produces nanoscale materials with exquisite control, the technique is slow and expensive. It also doesn't scale well for industrial applications and it isn't flexible in allowing the addition of new materials.

Zide will attempt to grow nanoscale materials in a new way through a 2012 Department of Energy Early Career Research grant from the Office of Basic Energy Sciences. One of only 68 individuals selected from a pool of nearly 850 applicants, the award will provide Zide $750,000 in research funding over five years.

Under the grant, Zide will explore the use of liquid phase epitaxy (LPE) to make nanocomposites for thermoelectrics, which are devices for generating electrical energy from heat. The work shows potential for transitioning these promising materials from the laboratory to the factory, allowing production of innovative electronic, optoelectronic and energy conversion devices.

"People have used LPE many times to make semiconductors. What we're doing is making the same kinds of nanocomposites using a hybrid approach that also employs inert gas condensation," he said.

The research team will first make the metal nanoparticles in the laboratory via inert gas condensation and then use the nanoparticles to grow materials by LPE. According to Zide, combining these two well-established, inexpensive techniques in a new way opens the door to making this class of materials in a commercially viable and scalable way.

"Instead of growing nanomaterials at one micron per hour, which is much slower than grass grows, LPE will enable us to grow nanomaterials at one micron per minute," Zide said.

"We think this could lead to a faster, better, cheaper way of making a class of nanocomposite materials with pretty exciting applications," he added.

Separating the production of the nanoparticles from the production of the film also increases the materials flexibility and enables it to be changed in ways not possible by MBE. In principle, Zide said the technique could also be applied to other materials systems, enabling researchers to combine more dissimilar materials in electronic nanocomposites.

During the project, he will collaborate and share equipment with materials science and engineering colleagues Ismat Shah, whose expertise lies in making nanoparticles via inert gas condensation, and Robert Opila, whose expertise lies in LPE.

Two graduate students will also participate in the project. One student will focus on creating the nanoparticles and the other will incorporate the nanoparticles into the films designed in Zide's laboratory and to study the materials' characterization and properties.

"This long-term funding will enable me to lead my research in an entirely new direction," Zide said.

About the award

The U.S. Department of Energy Early Career Research Program aims to strengthen the nation's scientific workforce. The five-year awards are designed to support exceptional researchers during their early career years, when many scientists do their most seminal work.

Now in its third year, the program also aims to providing incentives for scientists to focus on research areas important to the Department of Energy including advanced scientific computing research, biological and environmental research, basic energy sciences, fusion energy sciences, high-energy physics and nuclear physics.

About the professor

Joshua Zide joined UD in 2007 as an assistant professor in electrical engineering with a joint appointment in mechanical engineering. He joined the materials science and engineering faculty in 2009.

Zide earned his doctoral degree in materials from the University of California Santa Barbara in 2007 and his bachelor's degree with distinction in materials science and engineering from Stanford University in 2002.

Article by Karen B. Roberts

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Thin films

LAMDAMAP 2015 hosted by the University March 26th, 2015

A new method for making perovskite solar cells March 16th, 2015

Engineers create chameleon-like artificial 'skin' that shifts color on demand March 12th, 2015

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells March 10th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Discoveries

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Materials/Metamaterials

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Energy

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

FEI Announces Image Contest Grand Prize Winner: Francisco Rangel of the National Institute of Technology, INT/MCTI, Brazil, wins the contest with his “Expanded Vermiculite” image March 23rd, 2015

Halas, Nordlander awarded Optical Society's R.W. Wood Prize: Rice University researchers recognized for pioneering nanophotonics March 21st, 2015

Hiden Instruments identified in London Stock Exchange’s ‘1000 Companies to Inspire Britain' March 21st, 2015

Solar/Photovoltaic

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE