Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Faster, better, cheaper: UD scientist attempts to grow nanocomposites faster using novel approach

Joshua Zide (right), assistant professor of materials science and engineering, at work in the laboratory with Pernell Dongmo, a doctoral candidate in the College of Engineering.
Photo by Kathy F. Atkinson
Joshua Zide (right), assistant professor of materials science and engineering, at work in the laboratory with Pernell Dongmo, a doctoral candidate in the College of Engineering.

Photo by Kathy F. Atkinson

Abstract:
Joshua Zide, assistant professor of materials science and engineering at the University of Delaware, has spent nearly a decade engineering nanomaterials using a technique called molecular beam epitaxy (MBE).

Faster, better, cheaper: UD scientist attempts to grow nanocomposites faster using novel approach

Newark, DE | Posted on May 17th, 2012

In his research, Zide makes a class of materials called nanocomposites that consist of metallic nanoparticles within a semi-conductor. These nanocomposites can be used in electronic devices such as transistors or in energy conversion devices such as solar cells or thermoelectrics. Typically, these devices are made of semiconductors like silicon or gallium arsenide.

While MBE produces nanoscale materials with exquisite control, the technique is slow and expensive. It also doesn't scale well for industrial applications and it isn't flexible in allowing the addition of new materials.

Zide will attempt to grow nanoscale materials in a new way through a 2012 Department of Energy Early Career Research grant from the Office of Basic Energy Sciences. One of only 68 individuals selected from a pool of nearly 850 applicants, the award will provide Zide $750,000 in research funding over five years.

Under the grant, Zide will explore the use of liquid phase epitaxy (LPE) to make nanocomposites for thermoelectrics, which are devices for generating electrical energy from heat. The work shows potential for transitioning these promising materials from the laboratory to the factory, allowing production of innovative electronic, optoelectronic and energy conversion devices.

"People have used LPE many times to make semiconductors. What we're doing is making the same kinds of nanocomposites using a hybrid approach that also employs inert gas condensation," he said.

The research team will first make the metal nanoparticles in the laboratory via inert gas condensation and then use the nanoparticles to grow materials by LPE. According to Zide, combining these two well-established, inexpensive techniques in a new way opens the door to making this class of materials in a commercially viable and scalable way.

"Instead of growing nanomaterials at one micron per hour, which is much slower than grass grows, LPE will enable us to grow nanomaterials at one micron per minute," Zide said.

"We think this could lead to a faster, better, cheaper way of making a class of nanocomposite materials with pretty exciting applications," he added.

Separating the production of the nanoparticles from the production of the film also increases the materials flexibility and enables it to be changed in ways not possible by MBE. In principle, Zide said the technique could also be applied to other materials systems, enabling researchers to combine more dissimilar materials in electronic nanocomposites.

During the project, he will collaborate and share equipment with materials science and engineering colleagues Ismat Shah, whose expertise lies in making nanoparticles via inert gas condensation, and Robert Opila, whose expertise lies in LPE.

Two graduate students will also participate in the project. One student will focus on creating the nanoparticles and the other will incorporate the nanoparticles into the films designed in Zide's laboratory and to study the materials' characterization and properties.

"This long-term funding will enable me to lead my research in an entirely new direction," Zide said.

About the award

The U.S. Department of Energy Early Career Research Program aims to strengthen the nation's scientific workforce. The five-year awards are designed to support exceptional researchers during their early career years, when many scientists do their most seminal work.

Now in its third year, the program also aims to providing incentives for scientists to focus on research areas important to the Department of Energy including advanced scientific computing research, biological and environmental research, basic energy sciences, fusion energy sciences, high-energy physics and nuclear physics.

About the professor

Joshua Zide joined UD in 2007 as an assistant professor in electrical engineering with a joint appointment in mechanical engineering. He joined the materials science and engineering faculty in 2009.

Zide earned his doctoral degree in materials from the University of California Santa Barbara in 2007 and his bachelor's degree with distinction in materials science and engineering from Stanford University in 2002.

Article by Karen B. Roberts

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Thin films

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

IBS report electric transport across molybdenum disulfide grain boundaries: Scientific team from CINAP/IBS identifies previously undiscovered differences in grain boundaries January 28th, 2016

Weaving a new story for COFS and MOFs: First materials to be woven at the atomic and molecular levels created at Berkeley January 24th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Materials/Metamaterials

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Energy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Solar/Photovoltaic

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic