Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Faster, better, cheaper: UD scientist attempts to grow nanocomposites faster using novel approach

Joshua Zide (right), assistant professor of materials science and engineering, at work in the laboratory with Pernell Dongmo, a doctoral candidate in the College of Engineering.
Photo by Kathy F. Atkinson
Joshua Zide (right), assistant professor of materials science and engineering, at work in the laboratory with Pernell Dongmo, a doctoral candidate in the College of Engineering.

Photo by Kathy F. Atkinson

Abstract:
Joshua Zide, assistant professor of materials science and engineering at the University of Delaware, has spent nearly a decade engineering nanomaterials using a technique called molecular beam epitaxy (MBE).

Faster, better, cheaper: UD scientist attempts to grow nanocomposites faster using novel approach

Newark, DE | Posted on May 17th, 2012

In his research, Zide makes a class of materials called nanocomposites that consist of metallic nanoparticles within a semi-conductor. These nanocomposites can be used in electronic devices such as transistors or in energy conversion devices such as solar cells or thermoelectrics. Typically, these devices are made of semiconductors like silicon or gallium arsenide.

While MBE produces nanoscale materials with exquisite control, the technique is slow and expensive. It also doesn't scale well for industrial applications and it isn't flexible in allowing the addition of new materials.

Zide will attempt to grow nanoscale materials in a new way through a 2012 Department of Energy Early Career Research grant from the Office of Basic Energy Sciences. One of only 68 individuals selected from a pool of nearly 850 applicants, the award will provide Zide $750,000 in research funding over five years.

Under the grant, Zide will explore the use of liquid phase epitaxy (LPE) to make nanocomposites for thermoelectrics, which are devices for generating electrical energy from heat. The work shows potential for transitioning these promising materials from the laboratory to the factory, allowing production of innovative electronic, optoelectronic and energy conversion devices.

"People have used LPE many times to make semiconductors. What we're doing is making the same kinds of nanocomposites using a hybrid approach that also employs inert gas condensation," he said.

The research team will first make the metal nanoparticles in the laboratory via inert gas condensation and then use the nanoparticles to grow materials by LPE. According to Zide, combining these two well-established, inexpensive techniques in a new way opens the door to making this class of materials in a commercially viable and scalable way.

"Instead of growing nanomaterials at one micron per hour, which is much slower than grass grows, LPE will enable us to grow nanomaterials at one micron per minute," Zide said.

"We think this could lead to a faster, better, cheaper way of making a class of nanocomposite materials with pretty exciting applications," he added.

Separating the production of the nanoparticles from the production of the film also increases the materials flexibility and enables it to be changed in ways not possible by MBE. In principle, Zide said the technique could also be applied to other materials systems, enabling researchers to combine more dissimilar materials in electronic nanocomposites.

During the project, he will collaborate and share equipment with materials science and engineering colleagues Ismat Shah, whose expertise lies in making nanoparticles via inert gas condensation, and Robert Opila, whose expertise lies in LPE.

Two graduate students will also participate in the project. One student will focus on creating the nanoparticles and the other will incorporate the nanoparticles into the films designed in Zide's laboratory and to study the materials' characterization and properties.

"This long-term funding will enable me to lead my research in an entirely new direction," Zide said.

About the award

The U.S. Department of Energy Early Career Research Program aims to strengthen the nation's scientific workforce. The five-year awards are designed to support exceptional researchers during their early career years, when many scientists do their most seminal work.

Now in its third year, the program also aims to providing incentives for scientists to focus on research areas important to the Department of Energy including advanced scientific computing research, biological and environmental research, basic energy sciences, fusion energy sciences, high-energy physics and nuclear physics.

About the professor

Joshua Zide joined UD in 2007 as an assistant professor in electrical engineering with a joint appointment in mechanical engineering. He joined the materials science and engineering faculty in 2009.

Zide earned his doctoral degree in materials from the University of California Santa Barbara in 2007 and his bachelor's degree with distinction in materials science and engineering from Stanford University in 2002.

Article by Karen B. Roberts

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Thin films

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Chip Technology

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic