Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Delivery system for gene therapy may help treat arthritis

Drs. Andrew L. Mellor and Lei Huang at Georgia Health Sciences University have shown a system called DNA nanoparticles, used to deliver genes or drugs directly into cells to treat a variety of diseases, may help arthritis without delivering anything.

Credit: Phil Jones, GHSU Photographer
Drs. Andrew L. Mellor and Lei Huang at Georgia Health Sciences University have shown a system called DNA nanoparticles, used to deliver genes or drugs directly into cells to treat a variety of diseases, may help arthritis without delivering anything.

Credit: Phil Jones, GHSU Photographer

Abstract:
A DNA-covered submicroscopic bead used to deliver genes or drugs directly into cells to treat disease appears to have therapeutic value just by showing up, researchers report.

Delivery system for gene therapy may help treat arthritis

Augusta, GA | Posted on May 14th, 2012

Within a few hours of injecting empty-handed DNA nanoparticles, Georgia Health Sciences University researchers were surprised to see increased expression of an enzyme that calms the immune response.

In an animal model of rheumatoid arthritis, the enhanced expression of indoleomine 2,3 dioxygenase, or IDO, significantly reduced the hallmark limb joint swelling and inflammation of this debilitating autoimmune disease, researchers report in the study featured on the cover of The Journal of Immunology.

"It's like pouring water on a fire," said Dr. Andrew L. Mellor, Director of the GHSU's Medical College of Georgia Immunotherapy Center and the study's corresponding author. "The fire is burning down the house, which in this case is the tissue normally required for your joints to work smoothly," Mellor said of the immune system's inexplicable attack on bone-cushioning cartilage. "When IDO levels are high, there is more water to control the fire."

Several delivery systems are used for gene therapy, which is used to treat conditions including cancer, HIV infection and Parkinson's disease. The new findings suggest the DNA nanoparticle technique has value as well for autoimmune diseases such as arthritis, type 1 diabetes and lupus. "We want to induce IDO because it protects healthy tissue from destruction by the immune system," Mellor said.

The researchers were exploring IDO's autoimmune treatment potential by inserting the human IDO gene into DNA nanoparticles. They hoped to enhance IDO expression in their arthritis model when Dr. Lei Huang, Assistant Research Scientist and the paper's first author, serendipitously found that the DNA nanoparticle itself produced the desired result. Exactly how and why is still being pursued. Early evidence suggests that immune cells called phagocytes, white blood cells that gobble up undesirables like bacteria and dying cells, start making more IDO in response to the DNA nanoparticle's arrival. "Phagocytes eat it and respond quickly to it and the effect we measure is IDO," Mellor said.

Dr. Tracy L. McGaha, GHSU immunologist and a co-author on the current study, recently discovered that similar cells also prevented development of systemic lupus erythematosus in mice.

Follow-up studies include documenting all cells that respond by producing more IDO. GHSU researchers already are working with biopolymer experts at the Massachusetts Institute of Technology, the University of California, Berkeley and the Georgia Institute of Technology to identify the optimal polymer.

The polymer used in the study is not biodegradable so the researchers need one that will eventually safely degrade in the body. Ideally, they'd also like it to target specific cells, such as those near inflamed joints, to minimize any potential ill effects.

"It's like a bead and you wrap the DNA around it," Mellor said of the polymer. While the DNA does not have to carry anything to get the desired response in this case, DNA itself is essential to make cells express IDO. To ensure that IDO expression was responsible for the improvements, they also performed experiments in mice given an IDO inhibitor in their drinking water and in mice genetically altered to not express IDO. "Without access to the IDO pathway, the therapy no longer works," Mellor said.

Drs. Andrew Mellor and David Munn reported in 1998 in the journal Science that the fetus expresses IDO to help avoid rejection by the mother's immune system. Subsequent studies have shown tumors also use IDO for protection and clinical trials are studying the tumor-fighting potential of an IDO inhibitor. On the flip side, there is evidence that increasing IDO expression can protect transplanted organs and counter autoimmune disease.

Mellor is the Bradley-Turner and Georgia Research Alliance Eminent Scholar in Molecular Immunogenetics at MCG. The research was funded by the Carlos and Marguerite Mason Trust and the National Institutes of Health and a patent is pending on the findings.

####

For more information, please click here

Contacts:
Toni Baker

706-721-4421

Copyright © Georgia Health Sciences University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Patents/IP/Tech Transfer/Licensing

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

Nanotech Discoveries Move from Lab to Marketplace with Lintec Deal: Licensing Partnership Brings Together University Technology, New Richardson-Based Facility Directed by Alumni February 9th, 2015

Graphenea granted patent on graphene transfer February 9th, 2015

Toronto-based Environmental Technology Pioneer Green Earth Nano Science Expands in EU February 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE