Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > You canít play nano-billiards on a bumpy table

False colour scanning electron microscope image: the 'table' is the central green square region. The 'pockets' are narrowings that join to open green areas. The 'cushion' is the grey trench that defines the device. White scale bar - 500 nanometres
False colour scanning electron microscope image: the 'table' is the central green square region. The 'pockets' are narrowings that join to open green areas. The 'cushion' is the grey trench that defines the device. White scale bar - 500 nanometres

Abstract:
There's nothing worse than a shonky pool table with an unseen groove or bump that sends your shot off course: a new study has found that the same goes at the nano-scale, where the "billiard balls" are tiny electrons moving across a "table" made of the semiconductor gallium arsenide.

You canít play nano-billiards on a bumpy table

Sydney, Australia | Posted on May 14th, 2012

These tiny billiard tables are of interest towards the development of future computing technologies. In a research paper titled "The Impact of Small-Angle Scattering on Ballistic Transport in Quantum Dots", an international team of physicists has shown that in this game of "semiconductor billiards", small bumps have an unexpectedly large effect on the paths that electrons follow.

Better still, the team has come up with a major redesign that allows these bumps to be ironed out. The study, led by researchers from the UNSW School of Physics, is published in the journal Physical Review Letters.

The team included colleagues, from the University of Oregon (US), Niels Bohr Institute (Denmark) and Cambridge University (UK).

"Scaled down a million-fold from the local bar variety, these microscopic pool tables are cooled to just above absolute zero to study fundamental science, for example, how classical chaos theory works in the quantum mechanical limit, as well as questions with useful application, such as how the wave-like nature of the electron affects how transistors work," says team member Associate Professor Adam Micolich. "In doing this, impurities and defects in the semiconductor present a serious challenge."

Ultra-clean materials are used to eliminate impurities causing backscattering (akin to leaving a glass on the billiard table) but until now has been no way to avoid the ionized silicon atoms that supply the electrons.

"Their electrostatic effect is more subtle, essentially warping the table's surface." explains Micolich.

Earlier studies assumed this warping was negligible, with the electron paths determined only by the billiard table's shape (e.g. square, circular, stadium-shaped).

"We found that we can Ďreconfigure' the warping by warming the table up and cooling it down again, with the electron paths changing radically in response," says Professor Richard Taylor from the University of Oregon. "This shows that the warping is much more important than expected."

Using a new billiard design developed during PhD work at UNSW by lead author Dr Andrew See, the silicon dopants are removed, eliminating the associated warping, and enabling the electron paths to stay the same each time they cool the device down for study.

"These undoped billiard devices pinpoint the silicon dopants as the cause of the warping. The level of improvement obtained by removing the silicon was unexpected, earlier work on much larger devices suggested that we wouldn't see this level of improvement.

But at the nanoscale, the dopant atoms really do make a really big difference", says Micolich, "Ultimately, our work provides important insight into how to make better nanoscale electronic devices, ones where the properties are both more predictable, and more consistent each time we use them."

####

For more information, please click here

Contacts:
Bob Beale

61-411-705-435

Adam Micolich
02 9385 6132, 0408 479 432

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Physics

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Chip Technology

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Military

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project