Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > You canít play nano-billiards on a bumpy table

False colour scanning electron microscope image: the 'table' is the central green square region. The 'pockets' are narrowings that join to open green areas. The 'cushion' is the grey trench that defines the device. White scale bar - 500 nanometres
False colour scanning electron microscope image: the 'table' is the central green square region. The 'pockets' are narrowings that join to open green areas. The 'cushion' is the grey trench that defines the device. White scale bar - 500 nanometres

Abstract:
There's nothing worse than a shonky pool table with an unseen groove or bump that sends your shot off course: a new study has found that the same goes at the nano-scale, where the "billiard balls" are tiny electrons moving across a "table" made of the semiconductor gallium arsenide.

You canít play nano-billiards on a bumpy table

Sydney, Australia | Posted on May 14th, 2012

These tiny billiard tables are of interest towards the development of future computing technologies. In a research paper titled "The Impact of Small-Angle Scattering on Ballistic Transport in Quantum Dots", an international team of physicists has shown that in this game of "semiconductor billiards", small bumps have an unexpectedly large effect on the paths that electrons follow.

Better still, the team has come up with a major redesign that allows these bumps to be ironed out. The study, led by researchers from the UNSW School of Physics, is published in the journal Physical Review Letters.

The team included colleagues, from the University of Oregon (US), Niels Bohr Institute (Denmark) and Cambridge University (UK).

"Scaled down a million-fold from the local bar variety, these microscopic pool tables are cooled to just above absolute zero to study fundamental science, for example, how classical chaos theory works in the quantum mechanical limit, as well as questions with useful application, such as how the wave-like nature of the electron affects how transistors work," says team member Associate Professor Adam Micolich. "In doing this, impurities and defects in the semiconductor present a serious challenge."

Ultra-clean materials are used to eliminate impurities causing backscattering (akin to leaving a glass on the billiard table) but until now has been no way to avoid the ionized silicon atoms that supply the electrons.

"Their electrostatic effect is more subtle, essentially warping the table's surface." explains Micolich.

Earlier studies assumed this warping was negligible, with the electron paths determined only by the billiard table's shape (e.g. square, circular, stadium-shaped).

"We found that we can Ďreconfigure' the warping by warming the table up and cooling it down again, with the electron paths changing radically in response," says Professor Richard Taylor from the University of Oregon. "This shows that the warping is much more important than expected."

Using a new billiard design developed during PhD work at UNSW by lead author Dr Andrew See, the silicon dopants are removed, eliminating the associated warping, and enabling the electron paths to stay the same each time they cool the device down for study.

"These undoped billiard devices pinpoint the silicon dopants as the cause of the warping. The level of improvement obtained by removing the silicon was unexpected, earlier work on much larger devices suggested that we wouldn't see this level of improvement.

But at the nanoscale, the dopant atoms really do make a really big difference", says Micolich, "Ultimately, our work provides important insight into how to make better nanoscale electronic devices, ones where the properties are both more predictable, and more consistent each time we use them."

####

For more information, please click here

Contacts:
Bob Beale

61-411-705-435

Adam Micolich
02 9385 6132, 0408 479 432

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price Ė Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Physics

Researchers find the 'key' to quantum network solution May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Chip Technology

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Discoveries

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Announcements

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price Ė Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Military

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project