Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New research could mean faster computers and better mobile phones

"If you stretch a graphene sheet from end to end the thin layer can oscillate at a basic frequency of getting on for a billion times a second," says researcher Anders Nordenfelt. "This is the same frequency range used by radios, mobile phones and computers."

Credit: Photo: University of Gothenburg
"If you stretch a graphene sheet from end to end the thin layer can oscillate at a basic frequency of getting on for a billion times a second," says researcher Anders Nordenfelt. "This is the same frequency range used by radios, mobile phones and computers."

Credit: Photo: University of Gothenburg

Abstract:
Graphene and carbon nanotubes could improve the electronics used in computers and mobile phones, reveals new research from the University of Gothenburg, Sweden.

New research could mean faster computers and better mobile phones

Gothenburg, Sweden | Posted on May 14th, 2012

Carbon nanotubes and graphene are both made up of carbon and have unique properties. Graphene comprises an atom-thick layer of carbon atoms, while carbon nanotubes can be likened to a graphene sheet that has been rolled up to form a tube.

"If you stretch a graphene sheet from end to end the thin layer can oscillate at a basic frequency of getting on for a billion times a second," says researcher Anders Nordenfelt. "This is the same frequency range used by radios, mobile phones and computers."

Possible to weigh DNA molecules

It is hoped that the limited size and weight of these new carbon materials could further reduce both the size and power consumption of our electronic circuits.

In addition to new applications in electronics, research is under way into how graphene can be used to weigh extremely small objects such as DNA molecules.

Self-oscillating nanowires

The high mechanical resonance frequencies mean that carbon nanotubes and graphene can pick up radio signals.

"The question is whether they can also be used to produce this type of signal in a controlled and effective way," says Anders Nordenfelt. "This assumes that they themselves are not driven by an oscillating signal that, in turn, needs to be produced by something else."

In his research Anders Nordenfelt carried out a mathematical analysis to demonstrate that it is possible to connect the nanowire with a fairly simple electronic circuit, and at the same time to apply a magnetic field and thus get the nanowire to self-oscillate mechanically.

"At the same time we're converting a direct current to an alternating current with the same frequency as the mechanical oscillation," says Anders Nordenfelt.

Harmonics - a way of reaching even higher frequencies

In addition to their own keynote, all mechanical strings have harmonics that, for example, give different musical instruments their own particular sound.

"An unexpected and very interesting result is that the method I've proposed can be used to get the nanowire to self-oscillate in one of its harmonics," says Anders Nordenfelt. "You can change the harmonic by altering the size of one or more of the electronic components."

In principle, there are an infinite number of harmonics with unlimited high frequencies, but there are practical limitations.

A long-held research dream is to produce signals in the terahertz range, with trillions of oscillations per second.

This area is particularly interesting as it lies on the boundary between microwaves and infrared radiation that, to date, has been the subject of relatively little research. It is an area that has been too fast for electronic circuits, but too slow for optical circuits.

"We can't get these really high frequencies with my method as things stand, but it could be something for the future," says Anders Nordenfelt.

The thesis has been successfully defended.

####

For more information, please click here

Contacts:
Anders Nordenfelt

46-072-311-6035

Copyright © University of Gothenburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

New Nanodrug Produced in Iran from Milk Thistle May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Graphene

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Nanotubes/Buckyballs/Fullerenes

Making robots more human April 29th, 2015

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Nanomedicine

New Nanodrug Produced in Iran from Milk Thistle May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Polymeric Nanocarriers Improve Performance of Anticancer Drugs April 30th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

Discoveries

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Announcements

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

New Nanodrug Produced in Iran from Milk Thistle May 4th, 2015

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Nanobiotechnology

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

An effective, biodegradable and broad-spectrum nanoparticles as potent antibacterial agents April 28th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project