Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > In metallic glasses, researchers find a few new atomic structures: There are more than 5 sides to this story: In metallic glasses, researchers find a few new atomic structures

Abstract:
Drawing on powerful computational tools and a state-of-the-art scanning transmission electron microscope, a team of University of Wisconsin-Madison and Iowa State University materials science and engineering researchers has discovered a new nanometer-scale atomic structure in solid metallic materials known as metallic glasses.

In metallic glasses, researchers find a few new atomic structures: There are more than 5 sides to this story: In metallic glasses, researchers find a few new atomic structures

Madison, WI | Posted on May 11th, 2012

Published May 11 in the journal Physical Review Letters, the findings fill a gap in researchers' understanding of this atomic structure. This understanding ultimately could help manufacturers fine-tune such properties of metallic glasses as ductility, the ability to change shape under force without breaking, and formability, the ability to form a glass without crystalizing.

Glasses include all solid materials that have a non-crystalline atomic structure: They lack a regular geometric arrangement of atoms over long distances. "The fundamental nature of a glass structure is that the organization of the atoms is disordered—jumbled up like differently sized marbles in a jar, rather than eggs in an egg carton," says Paul Voyles, a UW-Madison associate professor of materials science and engineering and principal investigator on the research.

Researchers widely believe that atoms in metallic glasses are arranged only as pentagons in an order known as five-fold rotational symmetry. However, in studies of a zirconium-copper-aluminum metallic glass, Voyles' team found there are clusters of squares and hexagons—in addition to clusters of pentagons, some of which form chains—all located within the space of just a few nanometers. "One or two nanometers is a group of about 50 atoms—and it's how those 50 atoms are arranged with respect to one another that's the new and interesting part," he says.

Measuring the atomic structure of glass at this scale has been extremely difficult. Researchers know that, at a few tenths of a nanometer, atoms in metallic glasses have the same distances between them as they do in crystals. They also know that at long distances—hundreds of nanometers—there's no order left. "But what happens in between, at this 'magic' length of one to three nanometers, is very hard to measure experimentally and is essentially unexplored in experiments and simulations," says Voyles.

An expert in electron microscopy, Voyles used a powerful, state-of-the-art scanning transmission electron microscope at UW-Madison as his window into this nanometer-scale atomic structure. The microscope can generate an electron probe beam two nanometers in diameter—the ideal size for examining atoms on a length scale of one to three nanometers. "And that, fundamentally, is what makes the experiments work and gives us access to this information that's otherwise very difficult to obtain," he says. "We can match our experimental probe in size right to the size of what we want to measure."

Voyles and his team coupled the experimental data from the microscope with state-of-the-art computational methods to conduct simulations that accurately reflect the experiments. "It's the combination of those two things that gives us this new insight," he says. "We can look at the results and abstract general principles about rotational symmetry and nanoscale clustering."

There were several clues in the properties of some metallic glasses that these competing geometric structures might exist. Those arise from the interrelationships of structure, processing and properties, says Voyles. "If we understand how the structure controls, for example, glass-forming ability or the ability to change shape on bending or pulling, and we understand how different elements participate in these different kinds of structures, that gives us a handle on controlling properties by adjusting the composition or adjusting the rate at which the material was cooled or heated to change the structure in some useful way," he says.

One of the unique characteristics of glasses is their ability to transition continuously from a solid to a liquid state. While other materials, when heated, are partly melted and partly solid, glasses as a whole become increasingly malleable.

While manufacturers now apply metallic glasses primarily in electrical transformer cores, their special forming capabilities may enable manufacturers to make very small, intricate parts. "Unlike conventional metallic alloys, metallic glasses can be molded like plastic—so they can be pushed or sucked or blown into very complicated shapes without any loss of material or machining," says Voyles.

Those manufacturing methods hold true even at the micro or nanoscale, so it's possible to make, for example, forests of nanowires or the world's smallest geared motor. "Five or 10 years from now, there may be more commercial applications driven by those kinds of things than there are now," he says.

For Voyles and his team, the next step will be to calculate the properties of the most realistic structural models of metallic glass they have developed to learn how those properties relate to the structure.

Other authors on the Physical Review Letters paper include lead author Jinwoo Hwang, Z.H. Melgarejo and Don Stone of UW-Madison, and Y.E. Kalay, I. Kalay and M.J. Kramer of Iowa State University.

The National Science Foundation funded Voyles' research and an NSF grant enabled him and other UW-Madison collaborators to purchase the scanning transmission electron microscope. Installed in 2010, the microscope can be operated remotely and provides UW-Madison researchers a level of instrumentation on par with the world-leading federal laboratories and research universities.

####

For more information, please click here

Contacts:
Paul Voyles

608-265-6740

Renee Meiller
(608) 262-2481

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Imaging

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Discoveries

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Materials/Metamaterials

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Tools

Hiden CATLAB Microreactor System at ARABLAB 2015 | Visit us on Booth 1011 February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Research partnerships

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

European roadmap for graphene science and technology published February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE