Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spintronics Step Forward: Researchers show how to “set” the spin for spintronics applications important to faster electronic devices.

Sergey Lisenkov
Sergey Lisenkov

Abstract:
A team of physicists from the University of South Florida and the University of Kentucky have taken a big step toward the development of practical spintronics devices, a technology that could help create faster, smaller and more versatile electronic devices.

Spintronics Step Forward: Researchers show how to “set” the spin for spintronics applications important to faster electronic devices.

Tampa, FL | Posted on May 10th, 2012

The research funded by the U.S. Department of Energy was led by USF Physicist Sergey Lisenkov and Professor Madhu Menon at Kentucky's Center for Computational Sciences. Their findings were published this week in Physical Review Letters.

Lisenkov said an important step toward fabrication of the "holy grail" of spintronics is finding a semiconductor that has a net 'spin' at room temperature. The biggest challenge, however, is how to set the spin and in what material.

The USF-Kentucky team showed that a simple combination of metal atoms and a flat sheet of one atom- thick layer of pure carbon called graphene can be suitably engineered and used for this purpose.

Graphene is a relatively tangible material that can be made by peeling ordinary graphite (the same material in lead pencils) with common transparent tape. Graphene boasts properties such as a breaking strength 200 times greater than steel. It is of great interest to the semiconductor and data storage industries, electric currents that can blaze through it 100 times faster than in silicon.

Spintronic devices are hotly pursued because they promise to be smaller, more versatile, and much faster than today's electronics and use less energy.

Spin is a quantum mechanical property with directional values "up" or "down". This is analogous to the "on"' or "off"' values used with binary digital coding in modern computers. The advantage of spintronic devices is once the direction of the spin is set, no energy is required to keep it going. The spin-based data storage doesn't disappear when the electric current stops.

Using state-of-the-art theoretical computations, the research team demonstrated that by placing cobalt atoms in graphene holes - created by removing one or two nearby carbon atoms - it is possible to set the spins in a controlled manner. That, the researchers said, is the key to practical spintronics application for graphene.

####

For more information, please click here

Contacts:
Sergey Lisenkov
813/974-2871

Copyright © University of South Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read their complete paper, click here:

Related News Press

Graphene/ Graphite

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

News and information

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Discoveries

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Announcements

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Research partnerships

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project