Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spintronics Step Forward: Researchers show how to “set” the spin for spintronics applications important to faster electronic devices.

Sergey Lisenkov
Sergey Lisenkov

Abstract:
A team of physicists from the University of South Florida and the University of Kentucky have taken a big step toward the development of practical spintronics devices, a technology that could help create faster, smaller and more versatile electronic devices.

Spintronics Step Forward: Researchers show how to “set” the spin for spintronics applications important to faster electronic devices.

Tampa, FL | Posted on May 10th, 2012

The research funded by the U.S. Department of Energy was led by USF Physicist Sergey Lisenkov and Professor Madhu Menon at Kentucky's Center for Computational Sciences. Their findings were published this week in Physical Review Letters.

Lisenkov said an important step toward fabrication of the "holy grail" of spintronics is finding a semiconductor that has a net 'spin' at room temperature. The biggest challenge, however, is how to set the spin and in what material.

The USF-Kentucky team showed that a simple combination of metal atoms and a flat sheet of one atom- thick layer of pure carbon called graphene can be suitably engineered and used for this purpose.

Graphene is a relatively tangible material that can be made by peeling ordinary graphite (the same material in lead pencils) with common transparent tape. Graphene boasts properties such as a breaking strength 200 times greater than steel. It is of great interest to the semiconductor and data storage industries, electric currents that can blaze through it 100 times faster than in silicon.

Spintronic devices are hotly pursued because they promise to be smaller, more versatile, and much faster than today's electronics and use less energy.

Spin is a quantum mechanical property with directional values "up" or "down". This is analogous to the "on"' or "off"' values used with binary digital coding in modern computers. The advantage of spintronic devices is once the direction of the spin is set, no energy is required to keep it going. The spin-based data storage doesn't disappear when the electric current stops.

Using state-of-the-art theoretical computations, the research team demonstrated that by placing cobalt atoms in graphene holes - created by removing one or two nearby carbon atoms - it is possible to set the spins in a controlled manner. That, the researchers said, is the key to practical spintronics application for graphene.

####

For more information, please click here

Contacts:
Sergey Lisenkov
813/974-2871

Copyright © University of South Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read their complete paper, click here:

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Graphene/ Graphite

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN December 22nd, 2017

Study resolves controversy about electron structure of defects in graphene December 21st, 2017

Spintronics

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices October 2nd, 2017

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Research partnerships

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project