Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Spintronics Step Forward: Researchers show how to “set” the spin for spintronics applications important to faster electronic devices.

Sergey Lisenkov
Sergey Lisenkov

Abstract:
A team of physicists from the University of South Florida and the University of Kentucky have taken a big step toward the development of practical spintronics devices, a technology that could help create faster, smaller and more versatile electronic devices.

Spintronics Step Forward: Researchers show how to “set” the spin for spintronics applications important to faster electronic devices.

Tampa, FL | Posted on May 10th, 2012

The research funded by the U.S. Department of Energy was led by USF Physicist Sergey Lisenkov and Professor Madhu Menon at Kentucky's Center for Computational Sciences. Their findings were published this week in Physical Review Letters.

Lisenkov said an important step toward fabrication of the "holy grail" of spintronics is finding a semiconductor that has a net 'spin' at room temperature. The biggest challenge, however, is how to set the spin and in what material.

The USF-Kentucky team showed that a simple combination of metal atoms and a flat sheet of one atom- thick layer of pure carbon called graphene can be suitably engineered and used for this purpose.

Graphene is a relatively tangible material that can be made by peeling ordinary graphite (the same material in lead pencils) with common transparent tape. Graphene boasts properties such as a breaking strength 200 times greater than steel. It is of great interest to the semiconductor and data storage industries, electric currents that can blaze through it 100 times faster than in silicon.

Spintronic devices are hotly pursued because they promise to be smaller, more versatile, and much faster than today's electronics and use less energy.

Spin is a quantum mechanical property with directional values "up" or "down". This is analogous to the "on"' or "off"' values used with binary digital coding in modern computers. The advantage of spintronic devices is once the direction of the spin is set, no energy is required to keep it going. The spin-based data storage doesn't disappear when the electric current stops.

Using state-of-the-art theoretical computations, the research team demonstrated that by placing cobalt atoms in graphene holes - created by removing one or two nearby carbon atoms - it is possible to set the spins in a controlled manner. That, the researchers said, is the key to practical spintronics application for graphene.

####

For more information, please click here

Contacts:
Sergey Lisenkov
813/974-2871

Copyright © University of South Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read their complete paper, click here:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project