Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Spintronics Step Forward: Researchers show how to “set” the spin for spintronics applications important to faster electronic devices.

Sergey Lisenkov
Sergey Lisenkov

Abstract:
A team of physicists from the University of South Florida and the University of Kentucky have taken a big step toward the development of practical spintronics devices, a technology that could help create faster, smaller and more versatile electronic devices.

Spintronics Step Forward: Researchers show how to “set” the spin for spintronics applications important to faster electronic devices.

Tampa, FL | Posted on May 10th, 2012

The research funded by the U.S. Department of Energy was led by USF Physicist Sergey Lisenkov and Professor Madhu Menon at Kentucky's Center for Computational Sciences. Their findings were published this week in Physical Review Letters.

Lisenkov said an important step toward fabrication of the "holy grail" of spintronics is finding a semiconductor that has a net 'spin' at room temperature. The biggest challenge, however, is how to set the spin and in what material.

The USF-Kentucky team showed that a simple combination of metal atoms and a flat sheet of one atom- thick layer of pure carbon called graphene can be suitably engineered and used for this purpose.

Graphene is a relatively tangible material that can be made by peeling ordinary graphite (the same material in lead pencils) with common transparent tape. Graphene boasts properties such as a breaking strength 200 times greater than steel. It is of great interest to the semiconductor and data storage industries, electric currents that can blaze through it 100 times faster than in silicon.

Spintronic devices are hotly pursued because they promise to be smaller, more versatile, and much faster than today's electronics and use less energy.

Spin is a quantum mechanical property with directional values "up" or "down". This is analogous to the "on"' or "off"' values used with binary digital coding in modern computers. The advantage of spintronic devices is once the direction of the spin is set, no energy is required to keep it going. The spin-based data storage doesn't disappear when the electric current stops.

Using state-of-the-art theoretical computations, the research team demonstrated that by placing cobalt atoms in graphene holes - created by removing one or two nearby carbon atoms - it is possible to set the spins in a controlled manner. That, the researchers said, is the key to practical spintronics application for graphene.

####

For more information, please click here

Contacts:
Sergey Lisenkov
813/974-2871

Copyright © University of South Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read their complete paper, click here:

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Graphene

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Spintronics

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Research partnerships

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE