Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > In search of new ways of producing nano-materials: Kong’s research focuses on how to make and control novel forms of thin-film carbon

Photo: M. Scott Brauer
Photo: M. Scott Brauer

Abstract:
A life in academia was a natural career path for Jing Kong, the daughter of two Chinese academics at Tianjin Finance and Economics University: Her father taught and was editor of a journal, and her mother was in the university's foreign trade department and later worked with graduate students.

In search of new ways of producing nano-materials: Kong’s research focuses on how to make and control novel forms of thin-film carbon

Cambridge, MA | Posted on May 9th, 2012

Last year, after seven years at MIT, Kong was granted tenure as the ITT Career Development Associate Professor of Electrical Engineering.

Her interest in science and technology started, as it does for many people, with an inspiring teacher. "I had many very good teachers," Kong recalls, but there was "one in particular, a teacher of physics in middle school , Baoyi Liu. He gave me a lot of encouragement, and helped me to be interested" in the subject.

While in high school, "I took part in math, physics and chemistry competitions. I was chosen for the preparation class for a chemistry Olympics," Kong says. Although she didn't end up being chosen for the team, her year of preparation for the event at a Beijing high school entitled her to admission to one of China's top universities. She chose Beijing University because of its close proximity to her hometown.

Kong studied English during her undergraduate years, encouraged by many of her classmates who were planning to go abroad to finish their studies. After graduating in 1997, she decided to attend Stanford University for graduate studies — because, she says, its acceptance letter was first to arrive.

At Stanford, Kong began studying carbon nanotubes, microscopic cylinders formed by single-atom-thick sheets of carbon, which were by then a hot research area. She credits her "very talented" thesis advisor, Hongjie Dai, for the fact that her research in that field, which focused on finding better ways of synthesizing the material, was "very fruitful, and produced quite a lot of publications."

Working with several other graduate students, Kong found what turned out to be a very effective way of improving the production of nanotubes and controlling their growth, which made it much easier to produce electronic devices from them. "It turned out to be very useful," she says, and the team shared the technique with many other research groups.

While she enjoyed her work at Stanford, Kong eventually felt burned out and a bit lost, and began questioning the meaning of her efforts — so she joined a campus evangelical fellowship. At first, she says, "I was very much resistant to that idea that there is a God, but my perception changed after a seminar and discussion there." By the time she graduated, she recalls, she had become a Christian; ever since, she says, her faith has played "a critical role in my life."

Kong's first job after earning her doctorate was as a researcher at NASA's Ames Research Center, near the Stanford campus. (Her husband, He Dong, an electrical engineer whom she had met at Beijing University and then married while pursuing her doctorate, already had a job in the Bay Area.) But she found pure research unsatisfying, and longed to return to an academic environment where she could work with students and spend her life in a more meaningful way, sharing her religious faith with others. She received an offer from MIT, and after a brief stint as a postdoc at Delft University in the Netherlands, she started work at the Institute in 2004. She and her husband are now raising two daughters.

Kong's research at MIT has continued to focus on carbon nanomaterials, including nanotubes and graphene sheets. She has pioneered a new method of producing large sheets of graphene — previously available only in tiny flakes — and is continuing to work on improving the method. "I want to improve the quality of the material we make, and share the methods with colleagues," she says.

With carbon nanotubes, she has focused on developing ways to use the tiny structures as extremely sensitive chemical detectors for toxic gases, and ways of integrating them into new kinds of electronic devices.

Kong is emphatic about what is most important to her. "The research is only a platform for me to do God's work," she says. "His creation, the way he made this world, is very interesting. It's amazing, really."

####

For more information, please click here

Contacts:
David L. Chandler
MIT News Office

617-253-2704

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Human Interest/Art

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project