Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > In search of new ways of producing nano-materials: Kong’s research focuses on how to make and control novel forms of thin-film carbon

Photo: M. Scott Brauer
Photo: M. Scott Brauer

Abstract:
A life in academia was a natural career path for Jing Kong, the daughter of two Chinese academics at Tianjin Finance and Economics University: Her father taught and was editor of a journal, and her mother was in the university's foreign trade department and later worked with graduate students.

In search of new ways of producing nano-materials: Kong’s research focuses on how to make and control novel forms of thin-film carbon

Cambridge, MA | Posted on May 9th, 2012

Last year, after seven years at MIT, Kong was granted tenure as the ITT Career Development Associate Professor of Electrical Engineering.

Her interest in science and technology started, as it does for many people, with an inspiring teacher. "I had many very good teachers," Kong recalls, but there was "one in particular, a teacher of physics in middle school , Baoyi Liu. He gave me a lot of encouragement, and helped me to be interested" in the subject.

While in high school, "I took part in math, physics and chemistry competitions. I was chosen for the preparation class for a chemistry Olympics," Kong says. Although she didn't end up being chosen for the team, her year of preparation for the event at a Beijing high school entitled her to admission to one of China's top universities. She chose Beijing University because of its close proximity to her hometown.

Kong studied English during her undergraduate years, encouraged by many of her classmates who were planning to go abroad to finish their studies. After graduating in 1997, she decided to attend Stanford University for graduate studies — because, she says, its acceptance letter was first to arrive.

At Stanford, Kong began studying carbon nanotubes, microscopic cylinders formed by single-atom-thick sheets of carbon, which were by then a hot research area. She credits her "very talented" thesis advisor, Hongjie Dai, for the fact that her research in that field, which focused on finding better ways of synthesizing the material, was "very fruitful, and produced quite a lot of publications."

Working with several other graduate students, Kong found what turned out to be a very effective way of improving the production of nanotubes and controlling their growth, which made it much easier to produce electronic devices from them. "It turned out to be very useful," she says, and the team shared the technique with many other research groups.

While she enjoyed her work at Stanford, Kong eventually felt burned out and a bit lost, and began questioning the meaning of her efforts — so she joined a campus evangelical fellowship. At first, she says, "I was very much resistant to that idea that there is a God, but my perception changed after a seminar and discussion there." By the time she graduated, she recalls, she had become a Christian; ever since, she says, her faith has played "a critical role in my life."

Kong's first job after earning her doctorate was as a researcher at NASA's Ames Research Center, near the Stanford campus. (Her husband, He Dong, an electrical engineer whom she had met at Beijing University and then married while pursuing her doctorate, already had a job in the Bay Area.) But she found pure research unsatisfying, and longed to return to an academic environment where she could work with students and spend her life in a more meaningful way, sharing her religious faith with others. She received an offer from MIT, and after a brief stint as a postdoc at Delft University in the Netherlands, she started work at the Institute in 2004. She and her husband are now raising two daughters.

Kong's research at MIT has continued to focus on carbon nanomaterials, including nanotubes and graphene sheets. She has pioneered a new method of producing large sheets of graphene — previously available only in tiny flakes — and is continuing to work on improving the method. "I want to improve the quality of the material we make, and share the methods with colleagues," she says.

With carbon nanotubes, she has focused on developing ways to use the tiny structures as extremely sensitive chemical detectors for toxic gases, and ways of integrating them into new kinds of electronic devices.

Kong is emphatic about what is most important to her. "The research is only a platform for me to do God's work," she says. "His creation, the way he made this world, is very interesting. It's amazing, really."

####

For more information, please click here

Contacts:
David L. Chandler
MIT News Office

617-253-2704

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Graphene/ Graphite

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Academic/Education

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Discoveries

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Announcements

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ageing can drive progress: Population ageing is likely to boost medicine, nanotechnology and robotics, but increase political risks July 27th, 2016

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic