Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > In search of new ways of producing nano-materials: Kong’s research focuses on how to make and control novel forms of thin-film carbon

Photo: M. Scott Brauer
Photo: M. Scott Brauer

Abstract:
A life in academia was a natural career path for Jing Kong, the daughter of two Chinese academics at Tianjin Finance and Economics University: Her father taught and was editor of a journal, and her mother was in the university's foreign trade department and later worked with graduate students.

In search of new ways of producing nano-materials: Kong’s research focuses on how to make and control novel forms of thin-film carbon

Cambridge, MA | Posted on May 9th, 2012

Last year, after seven years at MIT, Kong was granted tenure as the ITT Career Development Associate Professor of Electrical Engineering.

Her interest in science and technology started, as it does for many people, with an inspiring teacher. "I had many very good teachers," Kong recalls, but there was "one in particular, a teacher of physics in middle school , Baoyi Liu. He gave me a lot of encouragement, and helped me to be interested" in the subject.

While in high school, "I took part in math, physics and chemistry competitions. I was chosen for the preparation class for a chemistry Olympics," Kong says. Although she didn't end up being chosen for the team, her year of preparation for the event at a Beijing high school entitled her to admission to one of China's top universities. She chose Beijing University because of its close proximity to her hometown.

Kong studied English during her undergraduate years, encouraged by many of her classmates who were planning to go abroad to finish their studies. After graduating in 1997, she decided to attend Stanford University for graduate studies — because, she says, its acceptance letter was first to arrive.

At Stanford, Kong began studying carbon nanotubes, microscopic cylinders formed by single-atom-thick sheets of carbon, which were by then a hot research area. She credits her "very talented" thesis advisor, Hongjie Dai, for the fact that her research in that field, which focused on finding better ways of synthesizing the material, was "very fruitful, and produced quite a lot of publications."

Working with several other graduate students, Kong found what turned out to be a very effective way of improving the production of nanotubes and controlling their growth, which made it much easier to produce electronic devices from them. "It turned out to be very useful," she says, and the team shared the technique with many other research groups.

While she enjoyed her work at Stanford, Kong eventually felt burned out and a bit lost, and began questioning the meaning of her efforts — so she joined a campus evangelical fellowship. At first, she says, "I was very much resistant to that idea that there is a God, but my perception changed after a seminar and discussion there." By the time she graduated, she recalls, she had become a Christian; ever since, she says, her faith has played "a critical role in my life."

Kong's first job after earning her doctorate was as a researcher at NASA's Ames Research Center, near the Stanford campus. (Her husband, He Dong, an electrical engineer whom she had met at Beijing University and then married while pursuing her doctorate, already had a job in the Bay Area.) But she found pure research unsatisfying, and longed to return to an academic environment where she could work with students and spend her life in a more meaningful way, sharing her religious faith with others. She received an offer from MIT, and after a brief stint as a postdoc at Delft University in the Netherlands, she started work at the Institute in 2004. She and her husband are now raising two daughters.

Kong's research at MIT has continued to focus on carbon nanomaterials, including nanotubes and graphene sheets. She has pioneered a new method of producing large sheets of graphene — previously available only in tiny flakes — and is continuing to work on improving the method. "I want to improve the quality of the material we make, and share the methods with colleagues," she says.

With carbon nanotubes, she has focused on developing ways to use the tiny structures as extremely sensitive chemical detectors for toxic gases, and ways of integrating them into new kinds of electronic devices.

Kong is emphatic about what is most important to her. "The research is only a platform for me to do God's work," she says. "His creation, the way he made this world, is very interesting. It's amazing, really."

####

For more information, please click here

Contacts:
David L. Chandler
MIT News Office

617-253-2704

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Graphene/ Graphite

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Human Interest/Art

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

Call for NanoArt and Art-Science-Technology Papers June 9th, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

Are humans the new supercomputer?Today, people of all backgrounds can contribute to solving serious scientific problems by playing computer games. A Danish research group has extended the limits of quantum physics calculations and simultaneously blurred the boundaries between mac April 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic