Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > In search of new ways of producing nano-materials: Kong’s research focuses on how to make and control novel forms of thin-film carbon

Photo: M. Scott Brauer
Photo: M. Scott Brauer

Abstract:
A life in academia was a natural career path for Jing Kong, the daughter of two Chinese academics at Tianjin Finance and Economics University: Her father taught and was editor of a journal, and her mother was in the university's foreign trade department and later worked with graduate students.

In search of new ways of producing nano-materials: Kong’s research focuses on how to make and control novel forms of thin-film carbon

Cambridge, MA | Posted on May 9th, 2012

Last year, after seven years at MIT, Kong was granted tenure as the ITT Career Development Associate Professor of Electrical Engineering.

Her interest in science and technology started, as it does for many people, with an inspiring teacher. "I had many very good teachers," Kong recalls, but there was "one in particular, a teacher of physics in middle school , Baoyi Liu. He gave me a lot of encouragement, and helped me to be interested" in the subject.

While in high school, "I took part in math, physics and chemistry competitions. I was chosen for the preparation class for a chemistry Olympics," Kong says. Although she didn't end up being chosen for the team, her year of preparation for the event at a Beijing high school entitled her to admission to one of China's top universities. She chose Beijing University because of its close proximity to her hometown.

Kong studied English during her undergraduate years, encouraged by many of her classmates who were planning to go abroad to finish their studies. After graduating in 1997, she decided to attend Stanford University for graduate studies — because, she says, its acceptance letter was first to arrive.

At Stanford, Kong began studying carbon nanotubes, microscopic cylinders formed by single-atom-thick sheets of carbon, which were by then a hot research area. She credits her "very talented" thesis advisor, Hongjie Dai, for the fact that her research in that field, which focused on finding better ways of synthesizing the material, was "very fruitful, and produced quite a lot of publications."

Working with several other graduate students, Kong found what turned out to be a very effective way of improving the production of nanotubes and controlling their growth, which made it much easier to produce electronic devices from them. "It turned out to be very useful," she says, and the team shared the technique with many other research groups.

While she enjoyed her work at Stanford, Kong eventually felt burned out and a bit lost, and began questioning the meaning of her efforts — so she joined a campus evangelical fellowship. At first, she says, "I was very much resistant to that idea that there is a God, but my perception changed after a seminar and discussion there." By the time she graduated, she recalls, she had become a Christian; ever since, she says, her faith has played "a critical role in my life."

Kong's first job after earning her doctorate was as a researcher at NASA's Ames Research Center, near the Stanford campus. (Her husband, He Dong, an electrical engineer whom she had met at Beijing University and then married while pursuing her doctorate, already had a job in the Bay Area.) But she found pure research unsatisfying, and longed to return to an academic environment where she could work with students and spend her life in a more meaningful way, sharing her religious faith with others. She received an offer from MIT, and after a brief stint as a postdoc at Delft University in the Netherlands, she started work at the Institute in 2004. She and her husband are now raising two daughters.

Kong's research at MIT has continued to focus on carbon nanomaterials, including nanotubes and graphene sheets. She has pioneered a new method of producing large sheets of graphene — previously available only in tiny flakes — and is continuing to work on improving the method. "I want to improve the quality of the material we make, and share the methods with colleagues," she says.

With carbon nanotubes, she has focused on developing ways to use the tiny structures as extremely sensitive chemical detectors for toxic gases, and ways of integrating them into new kinds of electronic devices.

Kong is emphatic about what is most important to her. "The research is only a platform for me to do God's work," she says. "His creation, the way he made this world, is very interesting. It's amazing, really."

####

For more information, please click here

Contacts:
David L. Chandler
MIT News Office

617-253-2704

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead to Present at Jefferies 2015 Hepatitis B Summit August 5th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Graphene

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Stretching the limits on conducting wires July 25th, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Nanotubes/Buckyballs/Fullerenes

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Sensors

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Discoveries

World's quietest gas lets physicists hear faint quantum effects August 4th, 2015

Artificial blood vessels become resistant to thrombosis August 4th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Announcements

Arrowhead to Present at Jefferies 2015 Hepatitis B Summit August 5th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Proving nanoparticles in sunscreen products August 4th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Human Interest/Art

Omni Nano and Time Warner Cable Partner to Provide Nanotechnology Education to the Boys & Girls Clubs of Los Angeles: A $10,000 Donation to Benefit Youth of Los Angeles County's Boys & Girls Clubs August 4th, 2015

Kalam: versatility personified August 1st, 2015

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Renishaw's inVia confocal Raman microscope system is being used in conservation activities at the Rijksmuseum in Amsterdam, the Netherlands June 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project