Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Infrared LEDs can be made cheaper, compatible with silicon, say researchers

Abstract:
Light-emitting diodes at infrared wavelengths are the magic behind such things as night vision and optical communications, including the streaming data that comes through Netflix. Cornell researchers have advanced the process of making such LEDs cheaper and easier to fabricate, which could lead to ultra-thin LEDs painted onto silicon to replace computer wiring with light waves.

Infrared LEDs can be made cheaper, compatible with silicon, say researchers

Ithaca, NY | Posted on May 9th, 2012

The research group led by Frank Wise, professor of applied and engineering physics, reported online May 6 in the journal Nature Nanotechnology that they have used solution chemistry to make infrared LEDs out of nanocrystals, commonly known as quantum dots, out of lead sulfide.

Their process, which involves tuning emitted wavelengths based on controlling the size of the nanocrystals, could rival the effective, but expensive, practice of growing semiconductor materials using the atom-by-atom process known as epitaxy. The Cornell nanocrystal LEDs are about as bright as epitaxially grown LEDs, but they were made using low-temperature, solution-based processing that is much cheaper.

Infrared LEDs are usually made of crystals of such materials as indium gallium arsenide, and they cannot be grown on silicon due to their different crystal structures, Wise explained. Thus far there has been no natural way to make light-emitting materials on silicon.

Getting electrons to flow through nanocrystals is a major challenge, Wise said. The Cornell team did it with some clever chemistry: They changed the distance between the nanocrystals by changing the molecules on their surfaces. Longer carbon chains produced bigger spacing, which dramatically affected the efficiency of light emission. Changing the distance between nanocrystals by half a nanometer made the devices 100 times more efficient, Wise said. The researchers found the optimum distances between nanocrystals to make the LEDs emit the brightest light. They measured those distances using X-ray scattering technology provided by the Cornell High Energy Synchrotron Source (CHESS).

Because the Cornell-developed LEDs were made through solution processing, they can be more easily integrated with other materials. They could lead to such breakthroughs as the ability to "paint" the LEDs onto silicon, for example. Such an application would hold sway in optical interconnects, replacing electrical wires that are now a bottleneck for speed of the modern computer chip. Communication between chips with a light wave, rather than a wire, is expected to revolutionize information processing.

The nanocrystals the researchers used have struck interest among people making photovoltaic cells, too. A solar cell absorbs light and emits electrons as electric current, which can supply power. Lead sulfide and lead selenide nanocrystals are leading candidates for replacing cadmium telluride and other materials found in commercial solar cells today.

The paper's co-authors are Tobias Hanrath, assistant professor of chemical and biomolecular engineering, and George Malliaras, formerly an associate professor of materials science and engineering at Cornell; as well as former postdoctoral associate Liangfeng Sun; graduate students Joshua J. Choi, David Stachnik and Adam Bartnik (now a staff member at Wilson Laboratory); and postdoctoral associate Byung-Ryool Hyun.

The work was supported by the National Science Foundation, the KAUST-Cornell Center for Energy and Sustainability, the New York State Foundation for Science, Technology and Innovation and CHESS.

####

For more information, please click here

Contacts:
John Carberry
(607) 255-5353


Anne Ju


Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206

http://www.news.cornell.edu

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Display technology/LEDs/SS Lighting/OLEDs

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Leti Presents First Results in LED Pixelization & Record Resolution for Micro-Displays at Photonics West February 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Discoveries

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Announcements

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Quantum Dots/Rods

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Research partnerships

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project