Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Infrared LEDs can be made cheaper, compatible with silicon, say researchers

Abstract:
Light-emitting diodes at infrared wavelengths are the magic behind such things as night vision and optical communications, including the streaming data that comes through Netflix. Cornell researchers have advanced the process of making such LEDs cheaper and easier to fabricate, which could lead to ultra-thin LEDs painted onto silicon to replace computer wiring with light waves.

Infrared LEDs can be made cheaper, compatible with silicon, say researchers

Ithaca, NY | Posted on May 9th, 2012

The research group led by Frank Wise, professor of applied and engineering physics, reported online May 6 in the journal Nature Nanotechnology that they have used solution chemistry to make infrared LEDs out of nanocrystals, commonly known as quantum dots, out of lead sulfide.

Their process, which involves tuning emitted wavelengths based on controlling the size of the nanocrystals, could rival the effective, but expensive, practice of growing semiconductor materials using the atom-by-atom process known as epitaxy. The Cornell nanocrystal LEDs are about as bright as epitaxially grown LEDs, but they were made using low-temperature, solution-based processing that is much cheaper.

Infrared LEDs are usually made of crystals of such materials as indium gallium arsenide, and they cannot be grown on silicon due to their different crystal structures, Wise explained. Thus far there has been no natural way to make light-emitting materials on silicon.

Getting electrons to flow through nanocrystals is a major challenge, Wise said. The Cornell team did it with some clever chemistry: They changed the distance between the nanocrystals by changing the molecules on their surfaces. Longer carbon chains produced bigger spacing, which dramatically affected the efficiency of light emission. Changing the distance between nanocrystals by half a nanometer made the devices 100 times more efficient, Wise said. The researchers found the optimum distances between nanocrystals to make the LEDs emit the brightest light. They measured those distances using X-ray scattering technology provided by the Cornell High Energy Synchrotron Source (CHESS).

Because the Cornell-developed LEDs were made through solution processing, they can be more easily integrated with other materials. They could lead to such breakthroughs as the ability to "paint" the LEDs onto silicon, for example. Such an application would hold sway in optical interconnects, replacing electrical wires that are now a bottleneck for speed of the modern computer chip. Communication between chips with a light wave, rather than a wire, is expected to revolutionize information processing.

The nanocrystals the researchers used have struck interest among people making photovoltaic cells, too. A solar cell absorbs light and emits electrons as electric current, which can supply power. Lead sulfide and lead selenide nanocrystals are leading candidates for replacing cadmium telluride and other materials found in commercial solar cells today.

The paper's co-authors are Tobias Hanrath, assistant professor of chemical and biomolecular engineering, and George Malliaras, formerly an associate professor of materials science and engineering at Cornell; as well as former postdoctoral associate Liangfeng Sun; graduate students Joshua J. Choi, David Stachnik and Adam Bartnik (now a staff member at Wilson Laboratory); and postdoctoral associate Byung-Ryool Hyun.

The work was supported by the National Science Foundation, the KAUST-Cornell Center for Energy and Sustainability, the New York State Foundation for Science, Technology and Innovation and CHESS.

####

For more information, please click here

Contacts:
John Carberry
(607) 255-5353


Anne Ju


Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206

http://www.news.cornell.edu

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New pathway to valleytronics January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Discoveries

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Announcements

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Quantum Dots/Rods

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Shining a light on quantum dots measurement January 15th, 2015

Carbon Nanotubes Increase Efficiency of Solar Cells January 12th, 2015

TCL 55” Quantum Dot TV with Color IQ™ Optics Debuts at CES 2015: TVs with OLED-quality color at an affordable price coming soon to the US and Europe January 5th, 2015

Research partnerships

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE