Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Infrared LEDs can be made cheaper, compatible with silicon, say researchers

Abstract:
Light-emitting diodes at infrared wavelengths are the magic behind such things as night vision and optical communications, including the streaming data that comes through Netflix. Cornell researchers have advanced the process of making such LEDs cheaper and easier to fabricate, which could lead to ultra-thin LEDs painted onto silicon to replace computer wiring with light waves.

Infrared LEDs can be made cheaper, compatible with silicon, say researchers

Ithaca, NY | Posted on May 9th, 2012

The research group led by Frank Wise, professor of applied and engineering physics, reported online May 6 in the journal Nature Nanotechnology that they have used solution chemistry to make infrared LEDs out of nanocrystals, commonly known as quantum dots, out of lead sulfide.

Their process, which involves tuning emitted wavelengths based on controlling the size of the nanocrystals, could rival the effective, but expensive, practice of growing semiconductor materials using the atom-by-atom process known as epitaxy. The Cornell nanocrystal LEDs are about as bright as epitaxially grown LEDs, but they were made using low-temperature, solution-based processing that is much cheaper.

Infrared LEDs are usually made of crystals of such materials as indium gallium arsenide, and they cannot be grown on silicon due to their different crystal structures, Wise explained. Thus far there has been no natural way to make light-emitting materials on silicon.

Getting electrons to flow through nanocrystals is a major challenge, Wise said. The Cornell team did it with some clever chemistry: They changed the distance between the nanocrystals by changing the molecules on their surfaces. Longer carbon chains produced bigger spacing, which dramatically affected the efficiency of light emission. Changing the distance between nanocrystals by half a nanometer made the devices 100 times more efficient, Wise said. The researchers found the optimum distances between nanocrystals to make the LEDs emit the brightest light. They measured those distances using X-ray scattering technology provided by the Cornell High Energy Synchrotron Source (CHESS).

Because the Cornell-developed LEDs were made through solution processing, they can be more easily integrated with other materials. They could lead to such breakthroughs as the ability to "paint" the LEDs onto silicon, for example. Such an application would hold sway in optical interconnects, replacing electrical wires that are now a bottleneck for speed of the modern computer chip. Communication between chips with a light wave, rather than a wire, is expected to revolutionize information processing.

The nanocrystals the researchers used have struck interest among people making photovoltaic cells, too. A solar cell absorbs light and emits electrons as electric current, which can supply power. Lead sulfide and lead selenide nanocrystals are leading candidates for replacing cadmium telluride and other materials found in commercial solar cells today.

The paper's co-authors are Tobias Hanrath, assistant professor of chemical and biomolecular engineering, and George Malliaras, formerly an associate professor of materials science and engineering at Cornell; as well as former postdoctoral associate Liangfeng Sun; graduate students Joshua J. Choi, David Stachnik and Adam Bartnik (now a staff member at Wilson Laboratory); and postdoctoral associate Byung-Ryool Hyun.

The work was supported by the National Science Foundation, the KAUST-Cornell Center for Energy and Sustainability, the New York State Foundation for Science, Technology and Innovation and CHESS.

####

For more information, please click here

Contacts:
John Carberry
(607) 255-5353


Anne Ju


Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206

http://www.news.cornell.edu

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Display technology/LEDs/SS Lighting/OLEDs

'Quantum dot' technology may help light the future August 19th, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

New research may enhance display & LED lighting technology: Large-area integration of quantum dots and photonic crystals produce brighter and more efficient light August 9th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Discoveries

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Announcements

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Quantum Dots/Rods

'Quantum dot' technology may help light the future August 19th, 2015

New research may enhance display & LED lighting technology: Large-area integration of quantum dots and photonic crystals produce brighter and more efficient light August 9th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Research partnerships

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic