Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Purdue University researchers use nanoscale IR spectroscopy via AFM-IR to provide key insights into drug-polymer blends

Abstract:
Two new papers are going to press featuring the use of Anasys Instruments' nanoIR™ system by Professor Lynne S. Taylor's group in the Department of Industrial and Physical Pharmacy at Purdue University. In each study, miscibility of pharmaceutically relevant blends was examined and specific sub-micrometer-sized domains characterized using standard atomic force microscopy (AFM) and nanoscale Infrared spectroscopy (AFM-IR).

Purdue University researchers use nanoscale IR spectroscopy via AFM-IR to provide key insights into drug-polymer blends

Santa Barbara, CA | Posted on May 8th, 2012

The first of the two papers, entitled "Nanoscale Mid-Infrared Imaging of Phase Separation in a Drug-Polymer Blend" is being published in the June 2012 issue of the Journal of Pharmaceutical Sciences. The researchers at Purdue explored the applicability of nanoscale IR spectroscopy and imaging to analyze a partially miscible model pharmaceutical drug-polymer system consisting of felodipine and poly(acrylic acid) (PAA). By combining AFM topography imaging with AFM-IR chemical information obtained at a high spatial resolution, it was possible to interrogate both the structure and chemical composition of phases in the felodipine-PAA blends.

The second of the papers "Nanoscale Mid-Infrared Evaluation of the Miscibility Behavior of Blends of Dextran or Maltodextrin with Poly(vinylpyrrolidone)" has been accepted for publication in the Journal of Molecular Pharmaceuticals. In this study, the AFM topography data combined with AFM-IR chemical information provided structural insights into the formation of phase-separated systems. The size, shape, and distribution of the different domains formed and the dependence of these features on the molecular weights of the polymers was analyzed. AFM-IR analysis is an important complement to more traditional miscibility evaluation probes currently available in the field. According to Professor Taylor "being able to obtain infrared spectra at nanoscale spatial resolution is a dramatic development that should provide new insights into the microstructure of pharmaceutical formulations. This will enable us perform in-depth studies that enable relationships between microstructure, processing and product performance to be elucidated."

Reference 1: "Nanoscale Mid-Infrared Imaging of Phase Separation in a Drug-Polymer Blend", Bernard Van Eerdenbrugh, Micheal Lo, Kevin Kjoller, Curtis Marcott, and Lynne S. Taylor, Journal of Pharmaceutical Sciences, 101(6), 2066-2073, (2012).
Publication Date (Web): March 2, 2012 DOI: 10.1002/jps.23099

Reference 2: "Nanoscale Mid-Infrared Evaluation of the Miscibility Behavior of blends of Dextran or Maltodextrin with Poly(vinylpyrrolidone)", Bernard Van Eerdenbrugh, Micheal Lo, Kevin Kjoller, Curtis Marcott, and Lynne S. Taylor, Molecular Pharmaceutics, in press.
Publication Date (Web): April 8, 2012 DOI: 10.1021/mp300059z

####

About Anasys Instruments
Anasys Instruments is dedicated to delivering innovative products and solutions that analyze samples with spatially varying physical and chemical properties at the micro and nanoscale. Anasys Instruments introduced the nanoTA in 2006 which pioneered the field of nanoscale thermal property measurement. In 2010, Anasys Instruments proudly introduced the award-winning breakthrough nanoIR™ Platform which pioneered the field of nanoscale IR measurement.

For more information, please click here

Contacts:
Anasys contact:

Roshan Shetty
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara
CA 93101 USA
Tel: +1 (805) 730-3310

www.anasysinstruments.com
Media contact:

Jezz Leckenby
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA, UK
Tel: +44 (0) 1799 521881
Mob: +44 (0) 7843 012997

www.talking-science.com

Copyright © Anasys Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

Discoveries

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Announcements

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Tools

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project