Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Aluminum Nitride Nanotubes Proposed for Detecting Toxic Gases

Abstract:
Researchers at Tarbiat Modarres University together with their colleagues from the Islamic Azad University proposed aluminum nitride nanotubes as a potential sensing element for the poisonous and carcinogenic formaldehyde gas with the help of computer modeling and analysis.

Aluminum Nitride Nanotubes Proposed for Detecting Toxic Gases

Tehran, Iran | Posted on May 5th, 2012

Today, formaldehyde marks as a highly-used chemical compound in industrial applications though being proved carcinogenic. Carbon nanotubes, on the other hand, have been investigated as formaldehyde gas sensors, however there found to be difficulties in segregation of semiconductive and conductive CNTs as well as limited reactivity of the CNTs and the gas.

Nanotubular structure of aluminum nitride which exhibits semi-conductive properties - unlike the nonconductive bulk aluminum nitride - has attracted the attention of the mentioned researchers in this regard. The outcomes of the research work revealed that aluminum nitride nanotubes are promising in detection of the toxic formaldehyde gas.

"The results indicate that the adsorption of formaldehyde upon the aluminum nitride nanotubes is in favor of their electrical conductance. Therefore, provided that an AlN nanotube is placed in an electric circuit, we can read an electrical signal as soon as a few formaldehyde molecules are adsorbed," Ahmadi, a member of the research group, said , describing the conceptual sensor's mechanism.

Based on the findings of this research, the adsorption of formaldehyde on aluminum nitride nanotubes immediately causes charge transfer and narrows the energy gap which in turn increases the electric conductance of the tubes. A short response time, high selective operation, favorable degree of recovery, and being free of further treatments are among the advantages of this model sensor.

The researchers hope their study will motivate experimental efforts for the synthesis of AlN nanotube based formaldehyde sensors.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Nanotubes/Buckyballs/Fullerenes

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Sensors

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

American Chemical Society expands reach to include rapidly emerging area of sensor science July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Discoveries

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project