Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Aluminum Nitride Nanotubes Proposed for Detecting Toxic Gases

Abstract:
Researchers at Tarbiat Modarres University together with their colleagues from the Islamic Azad University proposed aluminum nitride nanotubes as a potential sensing element for the poisonous and carcinogenic formaldehyde gas with the help of computer modeling and analysis.

Aluminum Nitride Nanotubes Proposed for Detecting Toxic Gases

Tehran, Iran | Posted on May 5th, 2012

Today, formaldehyde marks as a highly-used chemical compound in industrial applications though being proved carcinogenic. Carbon nanotubes, on the other hand, have been investigated as formaldehyde gas sensors, however there found to be difficulties in segregation of semiconductive and conductive CNTs as well as limited reactivity of the CNTs and the gas.

Nanotubular structure of aluminum nitride which exhibits semi-conductive properties - unlike the nonconductive bulk aluminum nitride - has attracted the attention of the mentioned researchers in this regard. The outcomes of the research work revealed that aluminum nitride nanotubes are promising in detection of the toxic formaldehyde gas.

"The results indicate that the adsorption of formaldehyde upon the aluminum nitride nanotubes is in favor of their electrical conductance. Therefore, provided that an AlN nanotube is placed in an electric circuit, we can read an electrical signal as soon as a few formaldehyde molecules are adsorbed," Ahmadi, a member of the research group, said , describing the conceptual sensor's mechanism.

Based on the findings of this research, the adsorption of formaldehyde on aluminum nitride nanotubes immediately causes charge transfer and narrows the energy gap which in turn increases the electric conductance of the tubes. A short response time, high selective operation, favorable degree of recovery, and being free of further treatments are among the advantages of this model sensor.

The researchers hope their study will motivate experimental efforts for the synthesis of AlN nanotube based formaldehyde sensors.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Sensors

The stacked color sensor: True colors meet minimization November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project