Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fabrication Method Can Affect the Use of Block Copolymer Thin Films

The method of creating a thin film can have great effect on the material, such as the orientation of the tiny cylinders in this film proposed for use in computer memory. One method of film creation is far more effective at creating copolymer films with cylinders that stand on end (b), as they must to be usable. Scale bar represents 200 nanometers.
Credit: NIST
The method of creating a thin film can have great effect on the material, such as the orientation of the tiny cylinders in this film proposed for use in computer memory. One method of film creation is far more effective at creating copolymer films with cylinders that stand on end (b), as they must to be usable. Scale bar represents 200 nanometers.

Credit: NIST

Abstract:
A new study by a team including scientists from the National Institute of Standards and Technology (NIST) indicates that thin polymer films can have different properties depending on the method by which they are made. The results* suggest that deeper work is necessary to explore the best way of creating these films, which are used in applications ranging from high-tech mirrors to computer memory devices.

Fabrication Method Can Affect the Use of Block Copolymer Thin Films

Gaithersburg, MD | Posted on May 4th, 2012

Thin films spread atop a surface have many applications in industry. Inexpensive organic solar cells might be made of such films, to name one potential use. Typically they're made by dissolving the polymer, and then spreading a small amount of the liquid out on a surface, called a substrate. The solution becomes a film as the solvent dries and the remainder solidifies. But as this happens, stresses develop within the film that can affect its structure.

Manufacturers would like to know more about how to control these stresses to ensure the film does what they want. But scientists who study film formation often use a different method of casting films than a manufacturer would. One method used in industry is "flow coating"—similar to spreading frosting across a cake. Another method is "spin casting"—placing a drop of liquid on a substrate that spins rapidly and spreads the droplet out evenly by centrifugal force. Both methods create smooth films generally, but the team decided to examine whether the two methods create different effects in finished films consisting of a self-assembling block copolymer.

"It's an important question because some proposed applications intend to take advantage of these effects," Douglas says.

The team's comparison led to results that surprised them. Although the rapid spinning of spin casting is very dynamic, suggesting it would convey more stress to the resulting film, it actually led to fewer residual stresses than flow coating did. As previous studies have shown that leftover solvent can lead to stresses in the film, the team's new theory is that because the solvent evaporates from the developing film more slowly in flow coating, this solvent discourages the film solids from arranging themselves into the equilibrium structure.

For one example, the practical benefits of this understanding could help manufacturers who propose making computer memory devices from thin films in which the solids arrange themselves as tiny cylinders in the film. Such devices would require the cylinders to stand on end, not lay down flat.

"We find we can get them to stand up much more easily with one casting method than another," Douglas says. "If we can get better results simply by varying the mode of film casting, we need to explore more deeply what happens when you make films by different methods."
* X. Zhang, J.F. Douglas and R.L. Jones. Influence of film casting method on block copolymer ordering in thin films. Soft Matter, Mar. 21, 2012. doi:10.1039/C2SM07308K.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project