Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Light touch keeps a grip on delicate nanoparticles

NIST researchers' new approach to trapping nanoparticles uses a control and feedback system that nudges them only when needed, lowering the average intensity of the beam and increasing the lifetime of the nanoparticles while reducing their tendency to wander. On the left, 100-nanometer gold nanoparticles quickly escape from a static trap while gold nanoparticles trapped using the NIST method remained strongly confined.

Credit: NIST
NIST researchers' new approach to trapping nanoparticles uses a control and feedback system that nudges them only when needed, lowering the average intensity of the beam and increasing the lifetime of the nanoparticles while reducing their tendency to wander. On the left, 100-nanometer gold nanoparticles quickly escape from a static trap while gold nanoparticles trapped using the NIST method remained strongly confined.

Credit: NIST

Abstract:
Using a refined technique for trapping and manipulating nanoparticles, researchers at the National Institute of Standards and Technology (NIST) have extended the trapped particles' useful life more than tenfold.* This new approach, which one researcher likens to "attracting moths," promises to give experimenters the trapping time they need to build nanoscale structures and may open the way to working with nanoparticles inside biological cells without damaging the cells with intense laser light.

Light touch keeps a grip on delicate nanoparticles

Gaithersburg, MD | Posted on May 4th, 2012

Scientists routinely trap and move nanoparticles in a solution with "optical tweezers"—a laser focused to a very small point. The tiny dot of laser light creates a strong electric field, or potential well, that attracts particles to the center of the beam. Although the particles are attracted into the field, the molecules of the fluid they are suspended in tend to push them out of the well. This effect only gets worse as particle size decreases because the laser's influence over a particle's movement gets weaker as the particle gets smaller. One can always turn up the power of the laser to generate a stronger electric field, but doing that can fry the nanoparticles too quickly to do anything meaningful with them—if it can hold them at all.

NIST researchers' new approach uses a control and feedback system that nudges the nanoparticle only when needed, lowering the average intensity of the beam and increasing the lifetime of the nanoparticle while reducing its tendency to wander. According to Thomas LeBrun, they do this by turning off the laser when the nanoparticle reaches the center and by constantly tracking the particle and moving the tweezers as the particle moves.

"You can think of it like attracting moths in the dark with a flashlight," says LeBrun. "A moth is naturally attracted to the flashlight beam and will follow it even as the moth flutters around apparently at random. We follow the fluttering particle with our flashlight beam as the particle is pushed around by the neighboring molecules in the fluid. We make the light brighter when it gets too far off course, and we turn the light off when it is where we want it to be. This lets us maximize the time that the nanoparticle is under our control while minimizing the time that the beam is on, increasing the particle's lifetime in the trap."

Using this method at constant average beam power, 100-nanometer gold particles remained trapped 26 times longer than had been seen in previous experiments. Silica particles 350 nanometers in diameter lasted 22 times longer, but with the average beam power reduced by 33 percent. LeBrun says that their approach should be able to be combined with other techniques to trap and hold even smaller nanoparticles for extended periods without damaging them.

"We're more than an order of magnitude ahead of where we were before," says LeBrun. "We now hope to begin building complex nanoscale devices and testing nanoparticles as sensors and drugs in living cells."

####

For more information, please click here

Contacts:
Mark Esser

301-975-8735

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

* A. Balijepalli, J. Gorman, S. Gupta and T. LeBrun. Significantly Improved Trapping Lifetime of Nanoparticles in an Optical Trap using Feedback Control. Nano Letters. April 10, 2012. Available online:

Related News Press

News and information

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

KaSAM-2014 International Conference (September 7-10, 2014, Kathmandu, Nepal) August 19th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Laboratories

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Research of Empa scientists on the cover of "Nature": Synthesis of structurally pure carbon nanotubes using molecular seeds August 7th, 2014

FEI Reports New Advances in Neuroscience in Collaboration with NIH: Using cryo-electron microscopy, researchers determine the structural mechanism of glutamate receptors – an important insight to the brain’s memory formation and learning August 4th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Nanomedicine

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Sensors

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Non-Enzyme Nanosensors Quickly Measure Blood Sugar August 12th, 2014

Sensor Fabrication, Integration, and Commercialization Workshop August 11th, 2014

Discoveries

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Announcements

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Photonics/Optics/Lasers

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Harry Atwater and Albert Polman receive the Julius Springer Prize for Applied Physics 2014: Scientists honored for their pioneering achievements in plasmonics and nanophotonics August 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE