Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Liquid Crystal Design: Engineers develop technique to craft new materials using liquid crystals as structural guides

In this creative illustration, each small disc depicts actual data from computational models of nanometer-scale droplets containing liquid crystals, water and surfactants (molecules that lower the surface tensions of liquids). The different patterns show how the surfactants self-organize as they interact with liquid crystals on each droplet's surface.

Credit: Juan de Pablo, University of Wisconsin - Madison
In this creative illustration, each small disc depicts actual data from computational models of nanometer-scale droplets containing liquid crystals, water and surfactants (molecules that lower the surface tensions of liquids). The different patterns show how the surfactants self-organize as they interact with liquid crystals on each droplet's surface.

Credit: Juan de Pablo, University of Wisconsin - Madison

Abstract:
Liquid crystals, ubiquitous in cell-phone screens and computer monitors, were known to science long before engineers realized their utility in displays and other technologies. Now, an international team of researchers has discovered how to use liquid crystals as scaffolding to build novel materials with undiscovered properties.

Liquid Crystal Design: Engineers develop technique to craft new materials using liquid crystals as structural guides

Arlington, VA | Posted on May 3rd, 2012

Reporting their findings in the journal Nature on May 3, the researchers describe a sophisticated computational model for determining how liquid crystals behave within the confines of nanometer-scale droplets containing molecules that lower the surface tensions of liquids, called surfactants.

The researchers, led by University of Wisconsin-Madison engineer Juan de Pablo, show that as the droplets cool, the liquid crystals confine the surfactant molecules, organizing them into discrete structures.

As the researchers adjusted the model's parameters, such as droplet size or surfactant concentration, the simulation revealed that it is possible to use the technique to guide self-assembled structures with a wide range of properties and applications.

For example, the researchers suggest the technique could be used to construct materials from DNA building blocks, allowing unique detectors for biological materials and toxins.

"The researchers have taken a new and exciting approach to the study of liquid crystals, which will have impact in several scientific and technical arenas," adds Mary Galvin, National Science Foundation (NSF) program director for Materials Research Science and Engineering Centers.

NSF supported the research through the University of Wisconsin-Madison's Center on Nanostructured Interfaces, an NSF Center of Excellence for Materials Research and Innovation.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Joshua A. Chamot
NSF
(703) 292-7730


Terry Devitt
Univeristy of Wisconsin - Madison
(608) 262-8282


Program Contacts
Mary E. Galvin
NSF
(703) 292-8562


Principal Investigators
Juan de Pablo
Univeristy of Wisconsin - Madison
(608) 262-7727

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Leti Presents First Results in LED Pixelization & Record Resolution for Micro-Displays at Photonics West February 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Discoveries

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Announcements

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Research partnerships

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

UCLA physicists map the atomic structure of an alloy: Researchers measured the coordinates of more than 23,000 atoms in a technologically important material February 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project