Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Liquid Crystal Design: Engineers develop technique to craft new materials using liquid crystals as structural guides

In this creative illustration, each small disc depicts actual data from computational models of nanometer-scale droplets containing liquid crystals, water and surfactants (molecules that lower the surface tensions of liquids). The different patterns show how the surfactants self-organize as they interact with liquid crystals on each droplet's surface.

Credit: Juan de Pablo, University of Wisconsin - Madison
In this creative illustration, each small disc depicts actual data from computational models of nanometer-scale droplets containing liquid crystals, water and surfactants (molecules that lower the surface tensions of liquids). The different patterns show how the surfactants self-organize as they interact with liquid crystals on each droplet's surface.

Credit: Juan de Pablo, University of Wisconsin - Madison

Abstract:
Liquid crystals, ubiquitous in cell-phone screens and computer monitors, were known to science long before engineers realized their utility in displays and other technologies. Now, an international team of researchers has discovered how to use liquid crystals as scaffolding to build novel materials with undiscovered properties.

Liquid Crystal Design: Engineers develop technique to craft new materials using liquid crystals as structural guides

Arlington, VA | Posted on May 3rd, 2012

Reporting their findings in the journal Nature on May 3, the researchers describe a sophisticated computational model for determining how liquid crystals behave within the confines of nanometer-scale droplets containing molecules that lower the surface tensions of liquids, called surfactants.

The researchers, led by University of Wisconsin-Madison engineer Juan de Pablo, show that as the droplets cool, the liquid crystals confine the surfactant molecules, organizing them into discrete structures.

As the researchers adjusted the model's parameters, such as droplet size or surfactant concentration, the simulation revealed that it is possible to use the technique to guide self-assembled structures with a wide range of properties and applications.

For example, the researchers suggest the technique could be used to construct materials from DNA building blocks, allowing unique detectors for biological materials and toxins.

"The researchers have taken a new and exciting approach to the study of liquid crystals, which will have impact in several scientific and technical arenas," adds Mary Galvin, National Science Foundation (NSF) program director for Materials Research Science and Engineering Centers.

NSF supported the research through the University of Wisconsin-Madison's Center on Nanostructured Interfaces, an NSF Center of Excellence for Materials Research and Innovation.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Joshua A. Chamot
NSF
(703) 292-7730


Terry Devitt
Univeristy of Wisconsin - Madison
(608) 262-8282


Program Contacts
Mary E. Galvin
NSF
(703) 292-8562


Principal Investigators
Juan de Pablo
Univeristy of Wisconsin - Madison
(608) 262-7727

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Display technology/LEDs/SS Lighting/OLEDs

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Missing atoms in a forgotten crystal bring luminescence October 10th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Research partnerships

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project