Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Liquid Crystal Design: Engineers develop technique to craft new materials using liquid crystals as structural guides

In this creative illustration, each small disc depicts actual data from computational models of nanometer-scale droplets containing liquid crystals, water and surfactants (molecules that lower the surface tensions of liquids). The different patterns show how the surfactants self-organize as they interact with liquid crystals on each droplet's surface.

Credit: Juan de Pablo, University of Wisconsin - Madison
In this creative illustration, each small disc depicts actual data from computational models of nanometer-scale droplets containing liquid crystals, water and surfactants (molecules that lower the surface tensions of liquids). The different patterns show how the surfactants self-organize as they interact with liquid crystals on each droplet's surface.

Credit: Juan de Pablo, University of Wisconsin - Madison

Abstract:
Liquid crystals, ubiquitous in cell-phone screens and computer monitors, were known to science long before engineers realized their utility in displays and other technologies. Now, an international team of researchers has discovered how to use liquid crystals as scaffolding to build novel materials with undiscovered properties.

Liquid Crystal Design: Engineers develop technique to craft new materials using liquid crystals as structural guides

Arlington, VA | Posted on May 3rd, 2012

Reporting their findings in the journal Nature on May 3, the researchers describe a sophisticated computational model for determining how liquid crystals behave within the confines of nanometer-scale droplets containing molecules that lower the surface tensions of liquids, called surfactants.

The researchers, led by University of Wisconsin-Madison engineer Juan de Pablo, show that as the droplets cool, the liquid crystals confine the surfactant molecules, organizing them into discrete structures.

As the researchers adjusted the model's parameters, such as droplet size or surfactant concentration, the simulation revealed that it is possible to use the technique to guide self-assembled structures with a wide range of properties and applications.

For example, the researchers suggest the technique could be used to construct materials from DNA building blocks, allowing unique detectors for biological materials and toxins.

"The researchers have taken a new and exciting approach to the study of liquid crystals, which will have impact in several scientific and technical arenas," adds Mary Galvin, National Science Foundation (NSF) program director for Materials Research Science and Engineering Centers.

NSF supported the research through the University of Wisconsin-Madison's Center on Nanostructured Interfaces, an NSF Center of Excellence for Materials Research and Innovation.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Joshua A. Chamot
NSF
(703) 292-7730


Terry Devitt
Univeristy of Wisconsin - Madison
(608) 262-8282


Program Contacts
Mary E. Galvin
NSF
(703) 292-8562


Principal Investigators
Juan de Pablo
Univeristy of Wisconsin - Madison
(608) 262-7727

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Display technology/LEDs/SS Lighting/OLEDs

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Discoveries

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Research partnerships

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project