Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Biomimetic polymer synthesis enhances structure control

Abstract:
A new biomimetic approach to synthesising polymers will offer unprecedented control over the final polymer structure and yield advances in nanomedicine, researchers say.

Biomimetic polymer synthesis enhances structure control

Coventry, UK | Posted on May 3rd, 2012

In a University of Warwick-led study published in the journal Nature Chemistry, researchers from the UK (Prof Rachel O'Reilly, Dr Ronan McHale, and Joseph Patterson of the University of Warwick) and Australia (A/Prof Per Zetterlund of UNSW) outline a new method of polymer synthesis based on combination of segregation and templating - a pair of natural approaches that have evolved over billions of years that direct complex biological processes.

Segregation improves biochemical control in organisms' cells by organising reactants into defined, well-regulated environments, while the transfer of genetic information is a primary function of templating, the paper states.

Professor Rachel O'Reilly from the Department of Chemistry at the University of Warwick said: "The ability to synthesise polymers with such precision and control will enable us to tailor make polymers for specific needs, with major applications in materials chemistry, nanotechnology and nanomedicine."

Polymers are large molecules comprising thousands of small molecules - or monomers - bonded together to form a chain-like structure.

Polymers can have different properties and functionality depending on their constituent parts, and a range of high-tech applications.

One way of growing these chains is through a process known as radical polymerisation, whereby a free radical initiates chain growth by adding to a monomer unit, generating a new radical that in turns adds to monomer, etc.

However, conventional radical polymerisation yields polymers of ill-defined structure - they have a wide-range of molecular weights, the monomer sequence distribution along the chain is difficult to control and the length of the chain cannot be predetermined.

Professor O'Reilly said: "One of the long-standing goals in synthetic polymer chemistry is to be able to synthesize polymer of well-defined microstructure. Our approach offers much better control over molecular weight distributions, gives access to higher molecular weights, and offers potential to control tacticity and monomer sequence distribution."

This allows researchers to better control the physical and mechanical properties of the polymer, which determines its functionality, and could enable sequence-controlled polymerisation and thus controlled polymer folding, a pinnacle of polymer science.

"The overall structure in biopolymers is dictated by how the polymer chains fold - or arrange themselves in space - as exemplified by the DNA double helix," said Professor O'Reilly.

"To be able to mimic such behaviour it is necessary to be able to prepare polymers with very specific distributions of monomers along the chain."

Full bibliographic informationNature Chemistry

Biomimetic radical polymerization via cooperative assembly of segregating templates

Ronan McHale,
Joseph P. Patterson,
Per B. Zetterlund
& Rachel K. O'Reilly

Nature Chemistry (2012) doi:10.1038/nchem.1331

####

About University of Warwick
The University of Warwick is consistently ranked in the Top Ten UK Universities.

For more information, please click here

Contacts:
Professor O’Reilly
+44 (0)2476 523236


Anna Blackaby
University of Warwick
press officer
+44 (0)2476 575910
+44 (0) 7785 433155

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE