Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Electronic nose out in front

Abstract:
Chemical sensors are exceedingly good at detecting a single substance or a class of chemicals, even at highly rarified concentrations. Biological noses, however, are vastly more versatile and capable of discriminating subtle cues that would confound their engineered counterparts. Unfortunately, even highly trained noses do leave a certain ambiguity when relaying a signal and are not particularly suited for work in specialized situations like operating rooms. A new DNA-based chemical sensor appears to be both extremely sensitive and discerning, making it an important stride on the path to an all-electronic nose.

Electronic nose out in front

College Park, MD | Posted on May 2nd, 2012

A team of researchers report in a paper published in the American Institute of Physics' journal AIP Advances that specially tailored strands of DNA attached to carbon nanotubes can tell the difference between very similar molecules, even those that have an identical chemical makeup. "We're trying to develop this into an electronic nose system," says A.T. Charlie Johnson, a physicist at the University of Pennsylvania and study co-author. "We used this system to distinguish between optical isomers, molecules that are nearly identical except that one is structurally reversed - a mirror image."

The system works by affixing DNA strands to carbon nanotubes, which are excellent electrical conductors. The DNA strands have been fine-tuned to respond to particular chemicals, so when strands come in contact with a target chemical - even at very low concentrations - it produces a measurable electrical signal along the nanotube. The sensors were able to check for molecules that differ by as little as one carbon atom. Though the researchers are not the first to observe this effect, they have achieved an unprecedented level of differentiation for an all-electronic chemical detector. "What I'm focusing on is the size of the difference in the signal," says Johnson.

The researchers are next interested in creating something akin to an actual electronic nose consisting of many individual DNA-based sensors performing the same role as an olfactory receptor. The goal is to have a system that is highly versatile and sensitive with wide-scale applications. For example, the chemical dimethylsulfone is associated with skin cancer. The human nose cannot detect this volatile but it could be detected with the new sensor at concentrations as low as 25 parts per billion.

Acknowledgements: This work was supported by the Army Research Office and by the Nano/Bio Interface Center through the National Science Foundation.

Article: "DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers" is published in AIP Advances.

Authors: S.M. Khamis (1), R.A. Jones (1), A.T. Charlie Johnson (1), G. Preti (2,3), J. Kwak (2), and A. Gelperin (2,4).

(1) Department of Physics and Astronomy, University of Pennsylvania, Philadelphia
(2) Monell Chemical Senses Center, Philadelphia
(3) Department of Dermatology, University of Pennsylvania
(4) Princeton Neuroscience Institute, Princeton University, New Jersey

####

For more information, please click here

Contacts:
Charles Blue

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Sensors

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

Discoveries

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Announcements

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Military

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project