Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Electronic nose out in front

Abstract:
Chemical sensors are exceedingly good at detecting a single substance or a class of chemicals, even at highly rarified concentrations. Biological noses, however, are vastly more versatile and capable of discriminating subtle cues that would confound their engineered counterparts. Unfortunately, even highly trained noses do leave a certain ambiguity when relaying a signal and are not particularly suited for work in specialized situations like operating rooms. A new DNA-based chemical sensor appears to be both extremely sensitive and discerning, making it an important stride on the path to an all-electronic nose.

Electronic nose out in front

College Park, MD | Posted on May 2nd, 2012

A team of researchers report in a paper published in the American Institute of Physics' journal AIP Advances that specially tailored strands of DNA attached to carbon nanotubes can tell the difference between very similar molecules, even those that have an identical chemical makeup. "We're trying to develop this into an electronic nose system," says A.T. Charlie Johnson, a physicist at the University of Pennsylvania and study co-author. "We used this system to distinguish between optical isomers, molecules that are nearly identical except that one is structurally reversed - a mirror image."

The system works by affixing DNA strands to carbon nanotubes, which are excellent electrical conductors. The DNA strands have been fine-tuned to respond to particular chemicals, so when strands come in contact with a target chemical - even at very low concentrations - it produces a measurable electrical signal along the nanotube. The sensors were able to check for molecules that differ by as little as one carbon atom. Though the researchers are not the first to observe this effect, they have achieved an unprecedented level of differentiation for an all-electronic chemical detector. "What I'm focusing on is the size of the difference in the signal," says Johnson.

The researchers are next interested in creating something akin to an actual electronic nose consisting of many individual DNA-based sensors performing the same role as an olfactory receptor. The goal is to have a system that is highly versatile and sensitive with wide-scale applications. For example, the chemical dimethylsulfone is associated with skin cancer. The human nose cannot detect this volatile but it could be detected with the new sensor at concentrations as low as 25 parts per billion.

Acknowledgements: This work was supported by the Army Research Office and by the Nano/Bio Interface Center through the National Science Foundation.

Article: "DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers" is published in AIP Advances.

Authors: S.M. Khamis (1), R.A. Jones (1), A.T. Charlie Johnson (1), G. Preti (2,3), J. Kwak (2), and A. Gelperin (2,4).

(1) Department of Physics and Astronomy, University of Pennsylvania, Philadelphia
(2) Monell Chemical Senses Center, Philadelphia
(3) Department of Dermatology, University of Pennsylvania
(4) Princeton Neuroscience Institute, Princeton University, New Jersey

####

For more information, please click here

Contacts:
Charles Blue

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Sensors

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Nanoscience makes your wine better September 17th, 2014

Discoveries

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Announcements

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Military

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE