Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Electronic nose out in front

Abstract:
Chemical sensors are exceedingly good at detecting a single substance or a class of chemicals, even at highly rarified concentrations. Biological noses, however, are vastly more versatile and capable of discriminating subtle cues that would confound their engineered counterparts. Unfortunately, even highly trained noses do leave a certain ambiguity when relaying a signal and are not particularly suited for work in specialized situations like operating rooms. A new DNA-based chemical sensor appears to be both extremely sensitive and discerning, making it an important stride on the path to an all-electronic nose.

Electronic nose out in front

College Park, MD | Posted on May 2nd, 2012

A team of researchers report in a paper published in the American Institute of Physics' journal AIP Advances that specially tailored strands of DNA attached to carbon nanotubes can tell the difference between very similar molecules, even those that have an identical chemical makeup. "We're trying to develop this into an electronic nose system," says A.T. Charlie Johnson, a physicist at the University of Pennsylvania and study co-author. "We used this system to distinguish between optical isomers, molecules that are nearly identical except that one is structurally reversed - a mirror image."

The system works by affixing DNA strands to carbon nanotubes, which are excellent electrical conductors. The DNA strands have been fine-tuned to respond to particular chemicals, so when strands come in contact with a target chemical - even at very low concentrations - it produces a measurable electrical signal along the nanotube. The sensors were able to check for molecules that differ by as little as one carbon atom. Though the researchers are not the first to observe this effect, they have achieved an unprecedented level of differentiation for an all-electronic chemical detector. "What I'm focusing on is the size of the difference in the signal," says Johnson.

The researchers are next interested in creating something akin to an actual electronic nose consisting of many individual DNA-based sensors performing the same role as an olfactory receptor. The goal is to have a system that is highly versatile and sensitive with wide-scale applications. For example, the chemical dimethylsulfone is associated with skin cancer. The human nose cannot detect this volatile but it could be detected with the new sensor at concentrations as low as 25 parts per billion.

Acknowledgements: This work was supported by the Army Research Office and by the Nano/Bio Interface Center through the National Science Foundation.

Article: "DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers" is published in AIP Advances.

Authors: S.M. Khamis (1), R.A. Jones (1), A.T. Charlie Johnson (1), G. Preti (2,3), J. Kwak (2), and A. Gelperin (2,4).

(1) Department of Physics and Astronomy, University of Pennsylvania, Philadelphia
(2) Monell Chemical Senses Center, Philadelphia
(3) Department of Dermatology, University of Pennsylvania
(4) Princeton Neuroscience Institute, Princeton University, New Jersey

####

For more information, please click here

Contacts:
Charles Blue

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Sensors

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Discoveries

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Announcements

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Military

Electron spin brings order to high entropy alloys April 23rd, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project