Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanobiotix and Thomas Jefferson University Start Research Collaboration: Nanomedicine and Medical Education leaders are joining their forces in the United States to accelerate the development of NanoXray

Abstract:
Nanobiotix, a company developing novel cancer nanotherapeutics and Thomas Jefferson University, one of Philadelphia's premier medical and health sciences universities, today announced that they have entered into a research collaboration to accelerate the development of Nanobiotix' lead compound NBTXR3 in the US.

Nanobiotix and Thomas Jefferson University Start Research Collaboration: Nanomedicine and Medical Education leaders are joining their forces in the United States to accelerate the development of NanoXray

Paris, France and Philadelphia, PA | Posted on May 2nd, 2012

Under the terms of the collaboration agreement, Nanobiotix will fund a 2-year preclinical research program, which will be directed by Bo Lu, MD, Professor in the Department of Radiation Oncology at Jefferson and Director of the department's Division of Molecular Radiation Biology. The goal of the program is to study the therapeutic efficacy of NBTXR3, the lead product of Nanobiotix´ NanoXray pipeline.

NBTXR3, a nanoparticle consisting of hafnium oxide crystals, aims to enhance the local destruction of the tumor mass during radiotherapy. It accumulates in the cancer cells and, upon radiation, emits huge amounts of electrons leading to the formation of free radicals. These, in turn, damage the cancer cells and cause their targeted destruction. As a result, the destructive power of standard radiation therapy is locally and selectively enhanced within the tumor cells.

"For the treatment of cancer, it is important to develop ways that cause tumor cells to be more sensitive to radiation therapy," said Dr. Bo Lu. "We therefore are very interested in approaches that have the potential to amplify the power of the radiation dose inside the tumor without damaging the surrounding healthy cells."

"The collaboration is an important strategic step to develop our products," said Laurent Levy, PhD, CEO and co-founder of Nanobiotix. "Jefferson is a leader in the field of radiation oncology and Bo Lu is internationally renowned for his work in clinical and translational radiation oncology. Therefore, we are very much looking forward to the results of this collaboration, which will also help us expand our network and visibility in the Unites States."

NBTXR3 has been classified in the EU as class III medical device and is currently being tested in a European Phase I trial to establish feasibility and safety of NBTXR3 in patients with soft tissue sarcoma. Preliminary data are expected by the end of 2012. Further clinical trials are in preparation in Europe and in the US, where NBTXR3 is classified as a drug.

####

About Nanobiotix
Nanobiotix is a Paris, France, based nanomedicine company dedicated to the development of new cancer treatments. The company combines the advantages of nanotechnology and biotechnology. Nanobiotix is a spin-off of the State University of New York at Buffalo and was incorporated in 2003. It is funded by leading European venture capital firms (Matignon Technologies, OTC Asset Management, Cap Decisif, Amorcage Rhone-Alpes, CM-CIC Capital Innovation and Masseran Gestion – CGE). With the development of several new compounds, Nanobiotix's objective is to enhance its leading position in the nanomedicine field.

ABOUT THOMAS JEFFERSON UNIVERSITY - www.jefferson.edu

Thomas Jefferson University (TJU), the largest free standing academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation’s best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the College of Graduate Studies. Jefferson University Physicians is TJU’s multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals, Inc.

ABOUT NANOXRAY

Radiotherapy is used to treat about 50 to 60% of all cancer patients. It is known to be an effective treatment, but its efficacy is counteracted by the side effects in healthy tissue as the radiotherapy beam always needs to cross healthy tissue to reach the tumor. Radiotherapy therefore has a relatively narrow therapeutic window with a considerable need for improvement. Nanobiotix is developing a new class of therapeutics based on nanoparticles called NanoXray therapeutics. They consist of inert nanoparticles designed to enter tumor cells. Upon activation by a standard dose of radiation, NanoXray therapeutics releases a tremendous amount of electrons, leading to the formation of radicals that destroy the cancer cells. As shown in preclinical experiments, this release should be restricted to the tumor as the particles are delivered selectively to the tumor site. The surrounding healthy tissue should thus not be affected and receive the normal radiation dose as in standard radiotherapy. Nanobiotix´ goal is to significantly enhance the efficacy of radiotherapy within the tumor and to improve the clinical outcome of local treatment.

For more information, please click here

Contacts:
Nanobiotix
Laurent Levy


Press Contact
Ludger Weß/Ines-Regina Buth

+49 40 88 16 59 64 / +49 30 23 63 27 68
Thomas Jefferson University
Stephen Graff

+1 215-955-5291
-------------

Contact // Kontakt akampion Newswire:

Dr. Ludger Wess
Managing Partner, akampion
Hamburg Office
T: +49 (0)40 88 16 59 64
F: +49 (0)40 88 16 59 65


Ines-Regina Buth
Managing Partner, akampion
Berlin Office
T: +49 (0)30 23632768
F: +49 (0)30 23632769

Copyright © Nanobiotix

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Nanomedicine

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Tools

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Leti Extends Collaboration with Qualcomm on CoolCubeTM 3D Integration Technology for High-Density, High-Performance ICs: Collaboration Goals Include Building an Ecosystem To Take the Chip-stacking Technology from Design to Fabrication April 13th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Strem Chemicals and SONA Nanotech Sign Distribution Agreement for the World’s First Gold Nanorods Synthesized without CTAB February 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic