Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Homeland Defense: Novel Radiation Surveillance Technology Could Help Thwart Nuclear Terrorism

Examples of scintillators that were produced from molten glass by the researchers. The wormlike blue structure is an artifact from the glass-molding process. (Credit: Gary Meek)
Examples of scintillators that were produced from molten glass by the researchers. The wormlike blue structure is an artifact from the glass-molding process.

(Credit: Gary Meek)

Abstract:
Among terrorism scenarios that raise the most concern are attacks involving nuclear devices or materials. For that reason, technology that can effectively detect smuggled radioactive materials is considered vital to U.S. security.

Homeland Defense: Novel Radiation Surveillance Technology Could Help Thwart Nuclear Terrorism

Atlanta, GA | Posted on May 1st, 2012

To support the nation's nuclear-surveillance capabilities, researchers at the Georgia Tech Research Institute (GTRI) are developing ways to enhance the radiation-detection devices used at ports, border crossings, airports and elsewhere. The aim is to create technologies that will increase the effectiveness and reliability of detectors in the field, while also reducing cost. The work is co-sponsored by the Domestic Nuclear Defense Office of the Department of Homeland Security and by the National Science Foundation.

"U.S. security personnel have to be on guard against two types of nuclear attack - true nuclear bombs, and devices that seek to harm people by dispersing radioactive material," said Bernd Kahn, a researcher who is principal investigator on the project. "Both of these threats can be successfully detected by the right technology."

The GTRI team, led by co-principal investigator Brent Wagner, is utilizing novel materials and nanotechnology techniques to produce improved radiation detection. The researchers have developed the Nano-photonic Composite Scintillation Detector, a prototype that combines rare-earth elements and other materials at the nanoscale for improved sensitivity, accuracy and robustness.

Details of the research were presented April 23, 2012 at the SPIE Defense, Security, and Sensing Conference held in Baltimore, MD.

Scintillation detectors and solid-state detectors are two common types of radiation detectors, Wagner explained. A scintillation detector commonly employs a single crystal of sodium iodide or a similar material, while a solid-state detector is based on semiconducting materials such as germanium.

Both technologies are able to detect gamma rays and subatomic particles emitted by nuclear material. When gamma rays or particles strike a scintillation detector, they create light flashes that are converted to electrical pulses to help identify the radiation at hand. In a solid-state detector, incoming gamma rays or particles register directly as electrical pulses.

"Each reaction to a gamma ray takes a very short time - a fraction of a microsecond," Wagner said. "By looking at the number and the intensity of the pulses, along with other factors, we can make informed judgments about the type of radioactive material we're dealing with."

But both approaches have drawbacks. A scintillation detector requires a large crystal grown from sodium iodide or other materials. Such crystals are typically fragile, cumbersome, difficult to produce and extremely vulnerable to humidity.

A germanium-based solid-state detector offers better identification of different kinds of nuclear materials. But high-purity single-crystal germanium is difficult to make in a large volume; the result is less-sensitive devices with reduced ability to detect radiation at a distance. Moreover, germanium must be kept extremely cold - 200 degrees below zero Celsius -- to function properly, which poses problems for use in the field.

The Nanoscale Advantage

To address these problems, the GTRI team has been investigating a wide variety of alternative materials and methodologies. After selecting the scintillation approach over solid-state, the researchers developed a composite material -- composed of nanoparticles of rare-earth elements, halides and oxides -- capable of creating light.

"A nanopowder can be much easier to make, because you don't have to worry about producing a single large crystal that has zero imperfections," Wagner said.

A scintillator crystal must be transparent to light, he explained, a quality that's key to its ability to detect radiation. A perfect crystal uniformly converts incoming energy from gamma rays to flashes of light. A photo-multiplier then amplifies these flashes of light so they can be accurately measured to provide information about radioactivity.

However, when a transparent material - such as crystal or glass -- is ground into smaller pieces, its transparency disappears. As a result, a mixture of particles in a transparent glass would scatter the luminescence created by incoming gamma rays. That scattered light can't reach the photo-multiplier in a uniform manner, and the resulting readings are badly skewed.

To overcome this issue, the GTRI team reduced the particles to the nanoscale. When a nanopowder reaches particle sizes of 20 nanometers or less, scattering effects fade because the particles are now significantly smaller than the wavelength of incoming gamma rays.

"Think of it as a big ocean wave coming in," Wagner said. "That wave would definitely interact with a large boat, but something the size of a beach ball doesn't affect it."

Rare Earths and Silica

At first the team worked on dispersing radiation-sensitive crystalline nanoparticles in a plastic matrix. But they encountered problems with distributing the nanopowder uniformly enough in the matrix to achieve sufficiently accurate radiation readings.

More recently, the researchers have investigated a parallel path using glass rather than plastic as a matrix material, combining gadolinium and cerium bromide with silica and alumina.

Kahn explained that gadolinium or a similar material is essential to scintillation-type particle detection because of its role as an absorber. But in this case, when an incoming gamma ray is absorbed in gadolinium, the energy is not efficiently emitted in the form of luminescence.

Instead, the light emission role here falls to a second component - cerium. The gadolinium absorbs energy from an incoming gamma ray and transfers that energy to the cerium atom, which then acts as an efficient light emitter.

The researchers found that by heating gadolinium, cerium, silica and alumina and then cooling them from a molten mix to a solid monolith, they could successfully distribute the gadolinium and cerium in silica-based glasses. As the material cools, gadolinium and cerium precipitate out of the aluminosilicate solution and are distributed throughout the glass in a uniform manner. The resulting composite gives dependable readings when exposed to incoming gamma rays.

"We're optimistic that we've identified a productive methodology for creating a material that could be effective in the field," Wagner said. "We're continuing to work on issues involving purity, uniformity and scaling, with the aim of producing a material that can be successfully tested and deployed."

This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2008-DN-077-ARI001-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Writer: Rick Robinson

####

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA

Media Relations Contacts:
John Toon
404-894-6986


Kirk Englehardt
404-894-6015

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

A better hologram for fraud protection and wearable optics: Nanotechnology improves holographic capabilities by encoding light polarization May 16th, 2016

Russian scientists develop long-range secure quantum communication system April 13th, 2016

New laser technique promises super-fast and super-secure quantum cryptography April 7th, 2016

Record-breaking steel could be used for body armor, shields for satellites April 7th, 2016

Powders

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Sensors

The next generation of carbon monoxide nanosensors May 26th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Discoveries

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Announcements

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Tools

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

Homeland Security

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Sniffing out a dangerous vapor: University of Utah engineers develop material that can sense fuel leaks and fuel-based explosives March 28th, 2016

Detecting and identifying explosives with single test December 10th, 2015

Events/Classes

Novel gene therapy shows potential for lung repair in asthma May 18th, 2016

Arrowhead Pharmaceuticals' Preclinical Candidate ARC-LPA Achieves 98% Knockdown and Long Duration of Effect after Subcutaneous Administration May 10th, 2016

Nanometrics Announces Upcoming Investor Events May 10th, 2016

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic