Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Superconducting strip could become an ultra-low-voltage sensor: Minute-scale interactions govern electronic behaviour of superconductors with potential applications for voltage measurement techniques

Abstract:
Researchers studying a superconducting strip observed an intermittent motion of magnetic flux which carries vortices inside the regularly spaced weak conducting regions carved into the superconducting material. These vortices resulted in alternating static phases with zero voltage and dynamic phases, which are characterised by non-zero voltage peaks in the superconductor. This study, which is about to be published in EPJ Bı, was carried out by scientists from the Condensed Matter Theory Group of the University of Antwerp, Belgium, working in collaboration with Brazilian colleagues.

Superconducting strip could become an ultra-low-voltage sensor: Minute-scale interactions govern electronic behaviour of superconductors with potential applications for voltage measurement techniques

New York, NY and Heidelberg, Germany | Posted on April 30th, 2012

Superconductors, when subjected to sufficiently strong magnetic fields, feature vortices that carry quantized amounts of magnetic flux, although the natural tendency of superconductors is to expel such flux. The authors relied on the Ginzburg-Landau theory to study the dynamic of the nanometric- to millimetric-scale-width superconducting strip, which was subjected to a magnetic field applied at a right angle and a current applied alongside its length.
Typically, weakly acting superconducting regions are natural impediments for the passage of electrical current. However, the authors found that they also work as efficient pathways for vortices to enter and exit the superconducting strip. The increasing magnetic field also increases the density of mutually repelling vortices, which stimulates vortex motion across the strip in the presence of an external current. At the same time, the barrier for vortex entry and exit on the strip boundaries is also dependent on the magnetic field. This interplay of magnetic-field-dependent barriers and vortex-vortex interaction results in an on/off vortex motion in increasing magnetic fields.
Due to the simple geometry of the strip, these results can be confirmed experimentally in magnetoresistance measurements. These findings could be applicable in gate devices used to control various modes of on/off states in electrical systems which operate in specific windows of temperature, applied magnetic field, current and voltage.
Reference:
1. Berdiyorov G. R., de C. Romaguera A. R., Milosevic M. V., Doria M. M., Covaci L., Peeters F. M. (2012), Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links, European Physical Journal B (EPJ B), DOI: 10.1140/epjb/e2012-30013-7

####

For more information, please click here

Contacts:
Janine Haubenreisser
Springer
+49-6221-487-8414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Visit the homepage of the European Physical Journal:

Article on SpringerLink:

Related News Press

News and information

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Superconductivity

February 4th, 2016

Unconventional superconductivity near absolute zero temperature: Quantum critical point could be the reason for high temperature superconductivity February 2nd, 2016

Physics

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

The quantum fridge: It all comes down to quantum physics: scientists at TU Wien have analyzed why some gases can be cooled down to extremely low temperatures February 2nd, 2016

Unconventional superconductivity near absolute zero temperature: Quantum critical point could be the reason for high temperature superconductivity February 2nd, 2016

Discoveries

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Announcements

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Research partnerships

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Graphene shown to safely interact with neurons in the brain January 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic