Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Doped diamond structures offer promise for biotech applications

Figure. (a) Micrograph of SGFET source, gate and drain showing passivation openings. (b) Macro photograph of wire bonded device prior to encapsulation. Sample is 2x2 mm. (c) Epoxy encapsulated SGFET. (d) Experimental setup of SGFET using a MESFET analogy, depicting the channel depleted in the saturation regime.
Figure. (a) Micrograph of SGFET source, gate and drain showing passivation openings. (b) Macro photograph of wire bonded device prior to encapsulation. Sample is 2x2 mm. (c) Epoxy encapsulated SGFET. (d) Experimental setup of SGFET using a MESFET analogy, depicting the channel depleted in the saturation regime.

Abstract:
In a collaboration with Waseda University in Tokyo, LCN researchers have grown highly boron doped diamond layers only 1nm in thickness, a technique known as d-doping, for the realisation of high performance field effect transistors (FETs). When used in a novel configuration, where the normal metal gate that controls the transistor is replaced by an ion containing solution, such devices offer the prospect of highly sensitive detection of biochemical agents, or even action potentials from living cells.

Doped diamond structures offer promise for biotech applications

London, UK | Posted on April 28th, 2012

Professor Richard Jackman, who heads the LCNs Diamond Electronics Group, stated "this is the first time that the (111) crystal plane of diamond has been used to generate such heavily doped yet so incredibly thin layers. The resulting transistors offer very good gain and transconductance values when compared to similar devices". The work was performed in a collaboration between the LCN and Professor Kawarada's Diamond Devices team in Japan, with the secondment of Robert Edgington, a PhD student with the LCN team, to Waseda University for five months being made possible through a "Japan Society for the Promotion of Science (JSPS)" award. Robert found the experience valuable beyond just science, "to spend five months immersed in Japanese culture was transforming for me" said Robert, who had the opportunity to practice the Japanese language he had been studying in London prior to his visit. "Diamond surfaces offer a unique platform for chemical functionalisation for the purposes of biosensing" states Professor Jackman, who continued "we have encouraging initial data on the detection of PDGF, a growth factor linked with the promotion of cancer, using aptamers bound to the surface of the gate of the diamond transistor". Robert, who will continue similar work as a Postdoctoral Research Fellow with the UCL Diamond team, added "the work was very hands-on, with the development of diamond growth and doping techniques, the design of FET device structures, and the manipulation of biochemical species, representing a truly interdisciplinary activity".

Boron δ-doped (111) diamond Solution Gate Field Effect Transistors Robert Edgingtona, A. Rahim Ruslindab, Syunsuke Satob, Yuichiro Ishiyamab, Kyosuke Tsugeb, Tasuku Onob, Hiroshi Kawaradab and Richard B. Jackmana*
a London Centre for Nanotechnology, and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
b Department of Electronic and Photonic Systems, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555, Japan
* Corresponding author. Tel.: +442076791381; fax: +442076790595 E-mail address: (R. B. Jackman)

####

For more information, please click here

Copyright © London Centre for Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal link: Biosensors and Bioelectronics (IF 5.63), 33, 152-157 (2012) DOI 10.1016/j.bios.2011.12.044:

Related News Press

News and information

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Chip Technology

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Does nanoconfinement affect the interaction between two materials placed in contact? It ispossible to estimate how nanoconfinement affects the number of contacts formed by two materials placed in intimate contact and, hence, the interfacial interactions June 7th, 2018

Nanomedicine

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Sensors

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Discoveries

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Announcements

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti and Cellmic Join Forces to Speed Market Adoption of Lens-Free Imaging and Sensing Techniques May 3rd, 2018

Nanobiotix and Weill Cornell Medicine Partner on Pre-Clinical Research Inbox x May 3rd, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

Research partnerships

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project