Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Doped diamond structures offer promise for biotech applications

Figure. (a) Micrograph of SGFET source, gate and drain showing passivation openings. (b) Macro photograph of wire bonded device prior to encapsulation. Sample is 2x2 mm. (c) Epoxy encapsulated SGFET. (d) Experimental setup of SGFET using a MESFET analogy, depicting the channel depleted in the saturation regime.
Figure. (a) Micrograph of SGFET source, gate and drain showing passivation openings. (b) Macro photograph of wire bonded device prior to encapsulation. Sample is 2x2 mm. (c) Epoxy encapsulated SGFET. (d) Experimental setup of SGFET using a MESFET analogy, depicting the channel depleted in the saturation regime.

Abstract:
In a collaboration with Waseda University in Tokyo, LCN researchers have grown highly boron doped diamond layers only 1nm in thickness, a technique known as d-doping, for the realisation of high performance field effect transistors (FETs). When used in a novel configuration, where the normal metal gate that controls the transistor is replaced by an ion containing solution, such devices offer the prospect of highly sensitive detection of biochemical agents, or even action potentials from living cells.

Doped diamond structures offer promise for biotech applications

London, UK | Posted on April 28th, 2012

Professor Richard Jackman, who heads the LCNs Diamond Electronics Group, stated "this is the first time that the (111) crystal plane of diamond has been used to generate such heavily doped yet so incredibly thin layers. The resulting transistors offer very good gain and transconductance values when compared to similar devices". The work was performed in a collaboration between the LCN and Professor Kawarada's Diamond Devices team in Japan, with the secondment of Robert Edgington, a PhD student with the LCN team, to Waseda University for five months being made possible through a "Japan Society for the Promotion of Science (JSPS)" award. Robert found the experience valuable beyond just science, "to spend five months immersed in Japanese culture was transforming for me" said Robert, who had the opportunity to practice the Japanese language he had been studying in London prior to his visit. "Diamond surfaces offer a unique platform for chemical functionalisation for the purposes of biosensing" states Professor Jackman, who continued "we have encouraging initial data on the detection of PDGF, a growth factor linked with the promotion of cancer, using aptamers bound to the surface of the gate of the diamond transistor". Robert, who will continue similar work as a Postdoctoral Research Fellow with the UCL Diamond team, added "the work was very hands-on, with the development of diamond growth and doping techniques, the design of FET device structures, and the manipulation of biochemical species, representing a truly interdisciplinary activity".

Boron δ-doped (111) diamond Solution Gate Field Effect Transistors Robert Edgingtona, A. Rahim Ruslindab, Syunsuke Satob, Yuichiro Ishiyamab, Kyosuke Tsugeb, Tasuku Onob, Hiroshi Kawaradab and Richard B. Jackmana*
a London Centre for Nanotechnology, and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
b Department of Electronic and Photonic Systems, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555, Japan
* Corresponding author. Tel.: +442076791381; fax: +442076790595 E-mail address: (R. B. Jackman)

####

For more information, please click here

Copyright © London Centre for Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal link: Biosensors and Bioelectronics (IF 5.63), 33, 152-157 (2012) DOI 10.1016/j.bios.2011.12.044:

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Alliances/Trade associations/Partnerships/Distributorships

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

Research partnerships

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic