Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Boron-Nitride Nanotubes Show Potential in Cancer Treatment

Abstract:
A new study has shown that adding boron-nitride nanotubes to the surface of cancer cells can double the effectiveness of Irreversible Electroporation, a minimally invasive treatment for soft tissue tumors in the liver, lung, prostate, head and neck, kidney and pancreas. Although this research is in the very early stages, it could one day lead to better therapies for cancer.

Boron-Nitride Nanotubes Show Potential in Cancer Treatment

Newport News, VA | Posted on April 26th, 2012

The study was carried out by researchers in Italy at the Institute of Life Sciences, Scuola Superiore Sant'Anna in Pisa with BNNTs provided by researchers at NASA's Langley Research Center, the Department of Energy's Thomas Jefferson National Accelerator Facility and the National Institute of Aerospace.

Irreversible Electroporation is a new therapy for difficult-to-treat cancers in soft tissues. It is offered in many cancer treatment centers across the United States, and is being studied for effectiveness on a wide variety of specific cancers. Researchers at the Institute of Life Sciences began experimenting with BNNTs to see if the nanotubes could make the treatment more effective.

"Irreversible Electroporation is a way of putting holes in the wall of a tumor cell," said Michael W. Smith, chief scientist at BNNT, LLC and formerly a staff scientist at NASA's Langley Research Center.

Smith explained that when a hole of proper size is made in the wall of a cell, the cell reacts in a predictable fashion. Although the exact mechanism has not been pinpointed, researchers suspect that such a hole could trigger cell suicide. "The cell will literally go, Oh, something's terribly wrong, and kill itself. That's called apoptosis," he added.

Smith read about the Italian researcher's trials with BNNTs in a journal, and he offered the researchers a sample of the very high-quality Jefferson Lab/NASA Langley/NIA BNNTs. These BNNTs are highly crystalline and have a small diameter. Structurally, they also contain few walls with minimal defects, and are very long and highly flexible.

The Italian researchers first suspended the BNNTs in glycol-chitosan, a type of bio-soap solution, and blasted the tubes with sound waves to chop them into smaller bits. The solution, containing varying amounts of BNNTs, was then dumped on clusters of human epithelial carcinoma cells (also known as HeLa cells) in the lab to see if the BNNTs alone would kill the cells. The researchers determined the amount of BNNTs that killed roughly 25 percent of the cancer cells over 24 hours.

The researchers then exposed the HeLa cells to that amount of BNNTs in solution and zapped the cells with 160 Volts of electricity, which was the electroporation device supplier's suggested voltage and corresponds to an electric field of 800 Volts per centimeter. The researchers also treated unexposed cancer cells with the same voltage.

They found that the Irreversible Electroporation treatment method killed twice as many cancer cells with BNNTs (88 percent) on the cell surface than without (40 percent).

"They were able to get, in a petri dish, more than double the effectiveness. So, this technique works twice as well with our nanotubes on the cells than without them. That's a big deal, because you can either use a lot less voltage or kill a lot more cells," said Smith.

Smith and his colleague, Kevin Jordan, a Jefferson Lab staff engineer and chief engineer at BNNT, LLC, said that BNNTs have a long list of potential uses.

"Technology researchers say these nanotubes have energy applications, medical applications and aerospace applications," said Jordan.

The researchers are now attempting to scale up the production process, while also improving the purity of the BNNTs. Their aim is to be able to produce mass quantities of tubes for exploration of the full gamut of potential applications.

For instance, the Italian researchers will need more high-quality BNNTs to continue their studies in mice. Moving to this next step is promising, but the research is still in the very early stages, and it still has a long way to progress before the technique will be considered for use in the clinic to treat cancer.

Researchers at NASA's Langley Research Center, the Department of Energy's Thomas Jefferson National Accelerator Facility and the National Institute of Aerospace created a new technique to synthesize high-quality boron-nitride nanotubes (BNNTs). The pressurized vapor/condenser (PVC) method was developed with Jefferson Lab's Free-Electron Laser and was later perfected using a commercial welding laser. In this technique, the laser beam strikes a target inside a chamber filled with nitrogen gas. The beam vaporizes the target, forming a plume of boron gas. A condenser, a cooled metal wire, is inserted into the boron plume. The condenser cools the boron vapor as it passes by, causing liquid boron droplets to form. These droplets combine with the nitrogen to self-assemble into BNNTs.

The research was published online ahead of print in the journal Technology in Cancer Research and Treatment.

The BNNT nanotube material used in the study was produced through research supported by the NASA Langley Creativity and Innovation Program, the NASA Subsonic Fixed Wing program, DOE's Jefferson Lab and the Commonwealth of Virginia.

####

About DOE/Thomas Jefferson National Accelerator Facility
Jefferson Lab is managed and operated for the U.S. Department of Energy's Office of Science by Jefferson Science Associates, LLC, a joint venture between Southeastern Universities Research Association, Inc. and CSC Applied Technologies, LLC.

For more information, please click here

Contacts:
Kandice Carter
Jefferson Lab Public Affairs

757-269-7263

Copyright © DOE/Thomas Jefferson National Accelerator Facility

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Laboratories

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Research partnerships

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project