Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Slicing mitotic spindle with lasers, nanosurgeons unravel old pole-to-pole theory: Quantitative research shows key organelle of cell division to be more complex than previously thought

The top shows a series of fluorescent images of a spindle taken before the cut and at 5 seconds and 10 seconds after the cut. Scale bar, 10 µm. The bottom shows a graphical representation of the cut microtubules. The cut generates new 'plus' ends (red) and new 'minus' ends (green). The newly generated minus ends remain stable, whereas the new plus ends depolymerize, which creates two depolymerization fronts of opposed polarity.

Credit: Jan Brugués, Harvard School of Engineering and Applied Sciences.
The top shows a series of fluorescent images of a spindle taken before the cut and at 5 seconds and 10 seconds after the cut. Scale bar, 10 µm. The bottom shows a graphical representation of the cut microtubules. The cut generates new 'plus' ends (red) and new 'minus' ends (green). The newly generated minus ends remain stable, whereas the new plus ends depolymerize, which creates two depolymerization fronts of opposed polarity.

Credit: Jan Brugués, Harvard School of Engineering and Applied Sciences.

Abstract:
The mitotic spindle, an apparatus that segregates chromosomes during cell division, may be more complex than the standard textbook picture suggests, according to researchers at the Harvard School of Engineering and Applied Sciences (SEAS).

Slicing mitotic spindle with lasers, nanosurgeons unravel old pole-to-pole theory: Quantitative research shows key organelle of cell division to be more complex than previously thought

Cambridge, MA | Posted on April 26th, 2012

The findings, which result from quantitative measurements of the mitotic spindle, will appear tomorrow in the journal Cell.

The researchers used a femtosecond laser to slice through the strands of the organelle and then performed a mathematical analysis to infer the microscopic structure of the spindle from its response to this damage.

"We've been using this nanosurgery technique to understand the architecture and assembly of the spindle in a way that was never possible before," says Eric Mazur, Balkanski Professor of Physics and Applied Physics at Harvard, who co-authored the study. "It's very exciting."

The spindle, which is made of protein strands called microtubules, forms during cell division and segregates chromosomes into the daughter cells. It was previously unclear how microtubules are organized in the spindles of animal cells, and it was often assumed that the microtubules stretch along the length of the entire structure, pole to pole.

Mazur and his colleagues demonstrated that the microtubules can begin to form throughout the spindle. They also vary in length, with the shortest ones close to the poles.

"We wondered whether this size difference might result from a gradient of microtubule stabilization across the spindle, but it actually results from transport," says lead author Jan Brugués, a postdoctoral fellow at SEAS. "The microtubules generally nucleate and grow from the center of the spindle, from which point they are transported towards the poles. They disassemble over the course of their lifespan, resulting in long, young microtubules close to the midline and older, short microtubules closer to the poles."

"This research provides concrete evidence for something that we've only been able to estimate until now," Brugués adds.

Mazur and Brugués worked with Daniel Needleman, Assistant Professor of Applied Physics and Molecular and Cellular Biology at Harvard, and Valeria Nuzzo, a former postdoctoral fellow in Mazur's lab at SEAS, to bring the tools of applied physics to bear on a biological question.

The team used a femtosecond laser to make two small slices perpendicular to the plane of growth of the spindle apparatus in egg extracts of the frog species Xenopus laevis.

They were then able to collect quantitative data on the reconstruction of the spindle following this disruption and precisely determine the length and polarity of individual microtubules. Observing the speed and extent of depolymerization (unraveling) of the spindle, the team worked backwards to compile a complete picture of the beginning and end points of each microtubule. Finally, additional experiments and a numerical model confirmed the role of transport.

"The laser allowed us to make precise cuts and perform experiments that simply were not possible using previous techniques," says Mazur.

With further inquiries into spindle architecture, the researchers hope that scientists will one day have a complete understanding, and possibly even control over, the formation of the spindle.

"Understanding the spindle means understanding cell division," notes Brugués. "With a better understanding of how the spindle is supposed to operate, we have more hope of tackling the range of conditions—from cancer to birth defects—that result from disruptions to the cell cycle or from improper chromosomal segregation."

The research was supported by the National Science Foundation and by a fellowship from the Human Frontiers Science Program.

####

For more information, please click here

Contacts:
Caroline Perry

617-496-1351

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Nanomedicine

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Discoveries

Colon + septic tank = unique, at times stinky, study: Researchers use lab-scale human colon and septic tank to study impact of copper nanoparticles on the environment March 2nd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Breakthrough in OLED technology March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Announcements

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE