Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SEMATECH Technologists Demonstrate Breakthrough Process Solutions for Extending Advanced Memory and Logic Technologies: Novel solutions for high mobility channel CMOS devices, FinFETs, RRAMs and technologies beyond CMOS devices

Abstract:
SEMATECH experts reported on innovative approaches to realize advanced CMOS logic and memory device technologies and 3D through-silicon via (TSV) manufacturing at the International VLSI Technology, System and Applications Symposium (VLSI-TSA) on April 23-25, 2012.

SEMATECH Technologists Demonstrate Breakthrough Process Solutions for Extending Advanced Memory and Logic Technologies: Novel solutions for high mobility channel CMOS devices, FinFETs, RRAMs and technologies beyond CMOS devices

Hsinchu, Taiwan | Posted on April 25th, 2012

Today nearly all electronic devices are built on complementary metal-oxide semiconductor (CMOS) technology. For over half a century, silicon-based materials have been the basic layers used in the manufacturing of CMOS transistors; however, these staple materials as well as materials derived from silicon such as insulators and contact metals are reaching their limits, as the industry looks to lower power dissipation in CMOS devices and as scaling approaches the physical limits of silicon transistors.

In a series of nine research papers, an international team of SEMATECH researchers reported on innovative materials and new transistor structures to address key aspects of transistor performance, power, and cost. The papers, selected from hundreds of submissions, outlined leading-edge research in high-k/metal gate (HKMG) materials, resistive RAM (RRAM) memory, and planar and non-planar CMOS technologies.

"Through intense research and development efforts, SEMATECH is developing manufacturable solutions and practical implementation approaches for innovative materials in future transistor structures," said Raj Jammy, vice president of emerging technologies. "The research that was presented at VLSI TSA demonstrates SEMATECH's leadership in developing new materials, processes and concepts that will pave the way for emerging technologies."

One potentially industry-changing technology, a direct metal bonding interconnect approach, was introduced by Sitaram Arkalgud, director of SEMATECH's 3D interconnect program. In order for 2.5D and 3D integration to reach its full potential, chip-to-interposer and chip-to-chip interfaces have to support a very large number of power and signal connections. Today, most solder-based interconnect schemes will not scale sufficiently due to mechanical, electrical, thermal, and reliability limitations.

Arkalgud revealed SEMATECH's copper-to-copper direct bonding (CuDB) technology as a promising technology to aggressively scale chip-to-chip interconnects and keep pace with advances in TSV. He also discussed recent progress and remaining technical and economic hurdles in moving toward high-volume manufacturing of CuDB interconnects.

SEMATECH technologists also reported technical advances in the following areas:

Silicon Channel Devices

· Evaluating stress-induced leakage current (SILC) in full gate-last (FGL) high-k/metal gate devices to address sources of SILC and propose possible process options for improvement. A high quality interlayer during gate stack formation was found to be critical to improving FGL device performance and reliability.

· Modeling positive bias temperature instability (PBTI) degradation in Zr-doped HfO2 gate stacks by considering fast and slow electron trapping processes. PBTI was found to improve when the fast trapping component was suppressed.

Non-Silicon Channel Devices

· Using different ALD oxidizers to study the effects of III-V oxides on device performance. With a O3 precursor, As-As, AsOx, GaO, and In2O3 were found to be the main native oxides/byproducts. H2O-based precursors remain stable with no III-V oxide detected throughout a low temperature flow. Electrical performance also improved with H2O-based high-k, suggesting that H2O-based ALD is the key process for III-V CMOS.

· Exploring alternative high-k gate dielectrics for III-V, Ge and Si MOSFETs. High-field carrier mobility and MOSFET parameter characteristics were improved by atomic layer deposition (ALD) of a thin beryllium oxide layer to passivate the interface between the Si channel and high-k gate dielectric.

Non-Planar Devices

· Studying FinFET Vt tuning. Both performance and the electrical properties of the gate stack were improved by an Al implantation, representing progress towards realizing multi threshold voltage FinFET device architectures for the 14 nm node and beyond.

· Studying the impact of fin doping on high-k/midgap metal gate SOI FinFETs. Threshold voltage can be effectively modulated with doping in ~25 nm wide fins. For sub-10 nm fin widths, however, the active dopant atoms must be precisely placed inside the fins, which ion implantation cannot do. A conformal doping technique with perfect dose control, such as monolayer doping, was discussed which may be the solution for future planar and non-planar devices.

· Evaluating the parasitic capacitance of planar FETs and double-gated (DG) FinFETs. Optimization with a fixed fin-to-height ratio significantly reduces parasitic capacitance, which renders DG FinFETs comparable to planar FETs. Fin width and height must be controlled in the DG FinFETs, otherwise the parasitic capacitance uniformity will degrade.

· Investigating the impact of source/drain (S/D) activation anneal on GAA pFETs. Low temperature pFETs were fabricated and benchmarked against devices with a S/D activation anneal. When S/D is implanted before the gate spacer, the un-annealed devices exhibited higher peak transconductance and drain current but have a higher off-current than their annealed counterparts. Pre- and post-spacer S/D implant schemes were also explored.

Advanced Non-Volatile Memory

· RRAM switching performance up to 1x108 cycles at low power and a 100x reduction of the high-resistance-state current was achieved by identification and utilization of key parameters for establishing superior control of the RRAM conductive filament formation.

SEMATECH's front end processes program, located at the College of Nanoscale Science and Engineering (CNSE) of the University at Albany, is exploring innovative materials, new transistor structures, and alternative non-volatile memories to address key aspects of system-level performance, power, variability, and cost and to help accelerate innovation in the continued scaling of logic and memory applications.

The International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) is sponsored by Taiwan's Industrial Technology Research Institute (ITRI) in association with Institute of Electrical and Electronics Engineers, or IEEE, a leading professional association for the advancement of technology. VLSI-TSA is one of many industry forums SEMATECH uses to collaborate with scientists and engineers from corporations, universities and other research institutions, many of whom are research partners.

####

About SEMATECH
SEMATECH®, the international consortium of leading semiconductor device, equipment, and materials manufacturers, this year celebrates 25 years of excellence in accelerating the commercialization of technology innovations into manufacturing solutions. Through our unwavering commitment to foster collaboration across the nanoelectronics industry, we help our members and partners address critical industry transitions, drive technical consensus, pull research into the industry mainstream, improve manufacturing productivity, and reduce risk and time to market. Information about SEMATECH can be found at www.sematech.org.

Twitter: www.twitter.com/sematechnews

For more information, please click here

Contacts:
Erica McGill
SEMATECH
Media Relations
257 Fuller Road, Suite 2200
Albany, NY 12203
o: 518-649-1041
m: 518-487-8256

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Chip Technology

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Memory Technology

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Announcements

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Events/Classes

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Oxford Instruments Asylum Research and Microscopy and Analysis Present the Webinar: “Video-Rate Atomic Force Microscopy Enables New Research Opportunities” May 9th, 2017

Alliances/Trade associations/Partnerships/Distributorships

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

Leti Announces EU/South Korean Project for World’s First 5G-system Prototype: Coinciding with the 2018 Winter Games in PyeongChang, Korea, Prototype Will Be First Time State-of-the-art Terrestrial Wireless Communication Is Seamlessly Combined with Disruptive Satellite Communicati April 4th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Research partnerships

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project