Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Creating nano-structures from the bottom up

This is a nano-structure.

Credit: Benjamin Yellen
This is a nano-structure.

Credit: Benjamin Yellen

Abstract:
Microscopic particles are being coaxed by Duke University engineers to assemble themselves into larger crystalline structures by the use of varying concentrations of microscopic particles and magnetic fields.

Creating nano-structures from the bottom up

Durham, NC | Posted on April 24th, 2012

These nano-scale crystal structures, which until now have been difficult and time-consuming to produce using current technologies, could be used as basic components for advanced optics, data storage and bioengineering, said the research team.

"Not only did we develop the theoretical underpinning for this new technique, but we demonstrated in the lab that we could create more than 20 different programmed structures," said Benjamin Yellen, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering and lead member of the research team. The results of the Duke experiments were published online in the journal Nature Communications.

"Despite the promise of creating new classes of man-made structures, current methods for creating these tiny structures in a reliable and cost-effective way remains a daunting challenge," Yellen said. "This new approach could open pathways for fabricating complex materials that cannot be produced by current techniques."

The research was supported by the Research Triangle Materials Research Science and Engineering Center, which is funded by the National Science Foundation.

The traditional method for creating man-made crystals is described as "top-down" by Yellen, which means they are fashioned by lithography or molding techniques, and can't be easily created in three dimensions.

"Our approach is much more 'bottom up,' in that we're starting at the level of a model 'atom' and working our way up," Yellen said.

By manipulating the magnetization within a liquid solution, the Duke researchers coaxed magnetic and non-magnetic particles to form intricate nano-structures, such as chains, rings and lattices.

The nano-structures are formed inside a liquid known as a ferrofluid, which is a solution consisting of suspensions of nanoparticles composed of iron-containing compounds. One of the unique properties of these fluids is that they become highly magnetized in the presence of external magnetic fields. The particles that are less magnetic than the ferrofluid behave similarly to negative charges, whereas the particles that are more magnetic than the ferrofluid act like positive charges. The opposite particles thus attract one another to form structures resembling salt crystals.

Since the magnetization of the fluid and the concentrations of the particles controls how the particles are attracted to or repelled by each other, the researchers were able to control the shapes and patterns of assembly. By appropriately "tuning" these interactions, the magnetic and non-magnetic particles form around each other much like a snowflake forms around a microscopic dust particle.

According to Yellen, researchers have long been able to create tiny structures made up of a single particle type, but the demonstration of sophisticated structures assembling in solutions containing multiple types of particles has been difficult to achieve. The structure of these nano-structures determines how they can ultimately be used.

Yellen foresees the use of these nano-structures in advanced optical devices, such as sensors, where different nano-structures could be designed to possess custom-made optical properties. Yellen also envisions that rings composed of metal particles could be used for antenna designs, and perhaps as one of the key components in the construction of materials that display artificial "optical magnetism" and negative magnetic permeability.

Other members of the team Duke's Karim Khalil, Amanda Sagategui, Mukarram Tahir, Joshua Socolar and Benjamin Wiley.

####

For more information, please click here

Contacts:
Richard Merritt

919-660-8414

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View video:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project