Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Creating nano-structures from the bottom up

This is a nano-structure.

Credit: Benjamin Yellen
This is a nano-structure.

Credit: Benjamin Yellen

Abstract:
Microscopic particles are being coaxed by Duke University engineers to assemble themselves into larger crystalline structures by the use of varying concentrations of microscopic particles and magnetic fields.

Creating nano-structures from the bottom up

Durham, NC | Posted on April 24th, 2012

These nano-scale crystal structures, which until now have been difficult and time-consuming to produce using current technologies, could be used as basic components for advanced optics, data storage and bioengineering, said the research team.

"Not only did we develop the theoretical underpinning for this new technique, but we demonstrated in the lab that we could create more than 20 different programmed structures," said Benjamin Yellen, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering and lead member of the research team. The results of the Duke experiments were published online in the journal Nature Communications.

"Despite the promise of creating new classes of man-made structures, current methods for creating these tiny structures in a reliable and cost-effective way remains a daunting challenge," Yellen said. "This new approach could open pathways for fabricating complex materials that cannot be produced by current techniques."

The research was supported by the Research Triangle Materials Research Science and Engineering Center, which is funded by the National Science Foundation.

The traditional method for creating man-made crystals is described as "top-down" by Yellen, which means they are fashioned by lithography or molding techniques, and can't be easily created in three dimensions.

"Our approach is much more 'bottom up,' in that we're starting at the level of a model 'atom' and working our way up," Yellen said.

By manipulating the magnetization within a liquid solution, the Duke researchers coaxed magnetic and non-magnetic particles to form intricate nano-structures, such as chains, rings and lattices.

The nano-structures are formed inside a liquid known as a ferrofluid, which is a solution consisting of suspensions of nanoparticles composed of iron-containing compounds. One of the unique properties of these fluids is that they become highly magnetized in the presence of external magnetic fields. The particles that are less magnetic than the ferrofluid behave similarly to negative charges, whereas the particles that are more magnetic than the ferrofluid act like positive charges. The opposite particles thus attract one another to form structures resembling salt crystals.

Since the magnetization of the fluid and the concentrations of the particles controls how the particles are attracted to or repelled by each other, the researchers were able to control the shapes and patterns of assembly. By appropriately "tuning" these interactions, the magnetic and non-magnetic particles form around each other much like a snowflake forms around a microscopic dust particle.

According to Yellen, researchers have long been able to create tiny structures made up of a single particle type, but the demonstration of sophisticated structures assembling in solutions containing multiple types of particles has been difficult to achieve. The structure of these nano-structures determines how they can ultimately be used.

Yellen foresees the use of these nano-structures in advanced optical devices, such as sensors, where different nano-structures could be designed to possess custom-made optical properties. Yellen also envisions that rings composed of metal particles could be used for antenna designs, and perhaps as one of the key components in the construction of materials that display artificial "optical magnetism" and negative magnetic permeability.

Other members of the team Duke's Karim Khalil, Amanda Sagategui, Mukarram Tahir, Joshua Socolar and Benjamin Wiley.

####

For more information, please click here

Contacts:
Richard Merritt

919-660-8414

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View video:

Related News Press

News and information

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Videos/Movies

New remote-controlled microrobots for medical operations July 23rd, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

A 'bridge' of carbon between nerve tissues: A high-tech 'sponge' connects neurons in vitro (and is biocompatible in vivo) July 18th, 2016

Self Assembly

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Discoveries

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Announcements

WSU researchers 'watch' crystal structure change in real time: Breakthrough made possible by new Argonne facility July 27th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic