Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New X-Ray Bionanoprobe Advances Life Science Research: instruments that can image whole, unsectioned cells in 3D, in their natural, hydrated state, and at a resolution significantly below 100 nm.”

Abstract:
Deployed last fall at the APS beam line operated by the Life Sciences Collaborative Access Team (LS-CAT), the Bionanoprobe is already enabling new, more cohesive imaging procedures. "We expect this unique capability to produce new insights into the behavior of nanoparticles within cells, in pharmacology and toxicology, environmental studies and other vital areas," says Dr. Keith Brister, LS-CAT Operations Manager.

New X-Ray Bionanoprobe Advances Life Science Research: instruments that can image whole, unsectioned cells in 3D, in their natural, hydrated state, and at a resolution significantly below 100 nm.”

Pleasanton, CA | Posted on April 24th, 2012

Unveiled in 2011, Xradia's Bionanoprobe enables imaging in four different modes: high resolution X-ray Fluorescence (XRF), transmission, spectroscopy, and tomography. The combination of these techniques provides information on elemental content, structure and chemical state, in 3D, over a wide range of length scales. Previously, to examine cells and other samples at progressively higher resolutions, researchers typically switched between multiple techniques such as magnetic resonance imaging (MRI), computed tomography (CT), visible light microscopy and electron microscopy, often using different samples and different preparation techniques for each one.

"Using one technique makes it possible to compare elements more precisely," says Dr. Woloschak. "Traditionally, looking at tissue under a regular microscope then moving to an electron microscope requires that we use different sections and preparation techniques, which can introduce artifacts and make it hard to compare and co-localize features. The best we could do is match as closely as possible; we couldn't look at the exact item under varying conditions."

The Bionanoprobe is also the first imaging solution to combine ultra-high resolution trace element mapping with cryogenic sample preservation and tomographic capabilities. Cryo preservation is essential to study cells and tissue in a state closely resembling that of being alive, while minimizing the effects of radiation damage that can distort the results. Tomography, or 3D imaging, is needed to exactly localize the features of interest inside the cell.

"The Bionanoprobe's cryogenic sample-handling system allows researchers to move the same cryogenically preserved sample from the X-ray nanoprobe to a transmission X-ray microscope, or potentially other cryo instruments," says Dr. Wenbing Yun, founder and CTO of Xradia, Inc. "Scientists look at tissue down to subcellular locations with one technique, which is virtually impossible otherwise."

####

About Xradia, Inc.
Xradia designs and manufactures microscopes for industrial and academic research applications. Xradia’s solutions offer unparalleled high contrast and high resolution imaging capabilities for a large range of sample sizes and shapes. The company’s heritage began in the synchrotron and extends to the laboratory. Xradia's two laboratory product families, the UltraXRM-L and VersaXRM™, together offer a multi-length scale solution delivering full volume 3D imaging with resolution down to 50 nm. Energy-tunable, ultra-high resolution 3D X-ray microscopes for synchrotron facilities include the UltraSPX™ and the UltraXRM-S.

About the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine

The Lurie Cancer Center is one of only 40 NCI-designated "Comprehensive" cancer centers in the nation and is a founding member of the National Comprehensive Cancer Network (NCCN), an alliance of 21 of the world's leading cancer centers dedicated to improving the quality and effectiveness of care.

About LS-CAT

The Life Sciences Collaborative Access Team (LS-CAT) is a consortium of eight institutions led by Northwestern University to provide state of the art synchrotron radiation instrumentation for biological experiments. LS-CAT researchers, along with several other biological facilities at the Advanced Photon Source at Argonne National Labs, lead the world in the area of macromolecular crystallography with substantial contributions to biology, genomics, and drug discovery. The collaboration between the APS, Xradia, and LS-CAT leverages the LS-CAT staff's expertise to provide new capabilities both to the LS-CAT members and to the general scientific community.

The eight institutional members of LS-CAT are Michigan State University, University of Michigan, Wayne State University, Van Andel Research Institution, University of Wisconsin at Madison, Vanderbilt University, University of Illinois, and Northwestern University. Additionally, researchers from other universities and companies regularly use the LS-CAT facilities.

About APS at Argonne National Laboratory

The Advanced Photon Source (APS) at the U.S. Department of Energy’s Argonne National Laboratory provides the United States’ brightest storage ring-generated X-ray beams for research in almost all scientific disciplines. These x-rays allow scientists to pursue new knowledge about the structure and function of materials in the center of the Earth and in outer space, and all points in between. The knowledge gained from this research can impact the evolution of combustion engines and microcircuits, aid in the development of new pharmaceuticals, and pioneer nanotechnologies whose scale is measured in billionths of a meter. These studies promise to have far-reaching impact on our technology, economy, health, and our fundamental knowledge of the materials that make up our world.

Xradia is a registered trademark and UltraXRM, VersaXRM, and UltraSPX are trademarks of Xradia, Inc.

For more information, please click here

Contacts:
Brenda Ropoulos
Phone: 1.510.414.6772
Fax: 925.730.4952

Copyright © Xradia, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Imaging

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Laboratories

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Nanomedicine

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Discoveries

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Tools

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project