Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > X-Ray Probe Finds New Organic Transistors Do Well in Hot Water

Abstract:
Materials scientists from the National Institute of Standards and Technology (NIST), working with an international research team, have helped prove the stability of a novel—and rugged—thin-film membrane that could prove key to a new class of sterilizable, flexible organic electronics for medical applications.

X-Ray Probe Finds New Organic Transistors Do Well in Hot Water

Gaithersburg, MD | Posted on April 19th, 2012

The work at the NIST low-energy X-ray beam line at the National Synchrotron Light Source (NSLS) in Brookhaven, N.Y., supported an international team led by researchers from the University of Tokyo and including participants from the Japan Science and Technology Agency, Princeton University, the Max Planck Institute for Solid State Research, Hiroshima University and Nippon Kayaku Co., Ltd. of Tokyo.*

Recent years have seen significant advances in organic microelectronics that replace rigid crystalline materials such as silicon with flexible polymeric materials. Engineers are eyeing a long list of potential applications, such as lightweight computer displays that could be printed on a film and rolled up or folded. But as the study's authors point out, flexible organic circuits also could have broad application in medical devices—especially implantable devices, like soft pacemakers.

But such devices would have to be sterilized at high temperatures, and organic electronics that don't break down under such temperatures have been hard to make. A particular problem is the all-important "gate insulation" layer in an organic transistor, which has to be extremely thin—to hold down the operating voltage to a reasonable level—while maintaining electrical integrity under heating. When heated to sterilizing temperatures, the thin films have tended to develop multiple "pinholes" that wreck performance.

To solve this, the Tokyo-based team proposed a novel gate material** that "self-assembles" into an ultrathin single layer of densely packed linear molecules that line up at a slight angle to the surface rather like the hairs on a retriever. The thickness of this self-assembled monolayer (SAM) can be as small as 2 nanometers, according to the research team.

Making accurate structural measurements of such a thin film is difficult. To check the molecular orientation and thermal stability of the SAM, samples from before and after heat treatment were examined on the NIST beamline using a technique called "near-edge X-ray absorption fine-structure spectroscopy" (NEXAFS). The technique essentially detects chemical bonds both at the surface of a sample and in the interior, and is extremely sensitive—capable of telling the difference between a single and double carbon bond in a molecule, for instance. Pinholes in the SAM are visible because NEXAFS sees through them to the underlying substrate. The NEXAFS measurements demonstrated that the new SAM thin films maintained their stability and integrity at temperatures in excess of 150º Celsius. This is believed to be the first time such high thermal stability has been observed in such a thin film.

* K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota, U. Zschieschang, C. Jaye, D. Fischer, H. Klauk, T. Yamamoto, K. Takimiya, M. Ikeda, H. Kuwabara, T. Sekitani, Y-L. Loo and T. Someya. Organic transistors with high thermal stability for medical applications. Nature Communications. 3, 723. Mar. 6, 2012. doi:10.1038/ncomms1721

** alkylphosphonic acids

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more details, see the Brookhaven National Laboratory news announcement, "The World's First Sterilizable Flexible Organic Transistor," at:

Related News Press

News and information

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Laboratories

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Imaging

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Thin films

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Chip Technology

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Discoveries

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Research partnerships

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE