Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST/UMass Study Finds Evidence Nanoparticles May Increase Plant DNA Damage

Graphic showing that increasing exposure to cupric oxide bulk particles (BPs) and nanoparticles (NPs) by radish plants also increases the impact on growth with NPs showing the largest impact. From left to right, the exposure concentrations are 0; 100 parts per million (ppm) BPs; 1,000 ppm BPs; 100 ppm NPs; and 1,000 ppm NPs (showing a severely stunted plant).
Credit: H. Wang, U.S. Environmental Protection Agency
Graphic showing that increasing exposure to cupric oxide bulk particles (BPs) and nanoparticles (NPs) by radish plants also increases the impact on growth with NPs showing the largest impact. From left to right, the exposure concentrations are 0; 100 parts per million (ppm) BPs; 1,000 ppm BPs; 100 ppm NPs; and 1,000 ppm NPs (showing a severely stunted plant).

Credit: H. Wang, U.S. Environmental Protection Agency

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) and the University of Massachusetts Amherst (UMass) have provided the first evidence that engineered nanoparticles are able to accumulate within plants and damage their DNA. In a recent paper,* the team led by NIST chemist Bryant C. Nelson showed that under laboratory conditions, cupric oxide nanoparticles have the capacity to enter plant root cells and generate many mutagenic DNA base lesions.

NIST/UMass Study Finds Evidence Nanoparticles May Increase Plant DNA Damage

Gaithersburg, MD | Posted on April 19th, 2012

The team tested the man-made, ultrafine particles between 1 and 100 nanometers in size on a human food crop, the radish, and two species of common groundcovers used by grazing animals, perennial and annual ryegrass. This research is part of NIST's work to help characterize the potential environmental, health and safety (EHS) risks of nanomaterials, and develop methods for identifying and measuring them.

Cupric oxide (also known as copper (II) oxide or CuO) is a compound that has been used for many years as a pigment for coloring glass and ceramics, as a polish for optics, and as a catalyst in the manufacture of rayon. Cupric oxide also is a strong conductor of electric current, a property enhanced at the nanoscale level, which makes the nanoparticle form useful to semiconductor manufacturers.

Because cupric oxide is an oxidizing agent—a reactive chemical that removes electrons from other compounds—it may pose a risk. Oxidation caused by metal oxides has been shown to induce DNA damage in certain organisms. What Nelson and his colleagues wanted to learn was whether nanosizing cupric oxide made the generation and accumulation of DNA lesions more or less likely in plants. If the former, the researchers also wanted to find out if nanosizing had any substantial effects on plant growth and health.

To obtain the answers, the NIST/UMass researchers first exposed radishes and the two ryegrasses to both cupric oxide nanoparticles and larger sized cupric oxide particles (bigger than 100 nanometers) as well as to simple copper ions. They then used a pair of highly sensitive spectrographic techniques** to evaluate the formation and accumulation of DNA base lesions and to determine if and how much copper was taken up by the plants.

For the radishes, twice as many lesions were induced in plants exposed to nanoparticles as were in those exposed to the larger particles. Additionally, the cellular uptake of copper from the nanoparticles was significantly greater than the uptake of copper from the larger particles. The DNA damage profiles for the ryegrasses differed from the radish profiles, indicating that nanoparticle-induced DNA damage is dependent on the plant species and on the nanoparticle concentration.

Finally, the researchers showed that cupric oxide nanoparticles had a significant effect on growth, stunting the development of both roots and shoots in all three plant species tested. The nanoparticle concentrations used in this study were higher than those likely to be encountered by plants under a typical soil exposure scenario.

"To our knowledge, this is first evidence that there could be a 'nano-based effect' for cupric oxide in the environment where size plays a role in the increased generation and accumulation of numerous mutagenic DNA lesions in plants," Nelson says.

Next up for Nelson and his colleagues is a similar study looking at the impact of titanium dioxide nanoparticles—such as those used in many sunscreens—on rice plants.

* D.H. Atha, H. Wang, E.J. Petersen, D. Cleveland, R.D. Holbrook, P. Jaruga, M. Dizdaroglu, B. Xing and B.C. Nelson. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science and Technology, Vol. 46 (3): pages 1819-1827 (2012), DOI: 10.1021/es202660k.

** Gas chromatography-mass spectrometry (GC-MS) to detect base lesions and inductively coupled plasma mass spectrometry (ICP-MS) to measure copper uptake.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Michael E. Newman

301-975-3025

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Laboratories

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Safety-Nanoparticles/Risk management

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Environmentally friendly lignin nanoparticle 'greens' silver nanobullet to battle bacteria July 13th, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Proposed TSCA Nanomaterial Rule ‘Premature’, Says Former EPA Toxicologist July 1st, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project