Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ultra-Sensitive Electrical Biosensor Unlocks Potential for Instant Diagnostic Devices

Abstract:
A new quantum mechanical-based biosensor designed by a team at University of California, Santa Barbara offers tremendous potential for detecting biomolecules at ultra-low concentrations, from instant point-of-care disease diagnostics, to detection of trace substances for forensics and security.

Ultra-Sensitive Electrical Biosensor Unlocks Potential for Instant Diagnostic Devices

Santa Barbara, CA | Posted on April 17th, 2012

Kaustav Banerjee, director of the Nanoelectronics Research Lab and professor of Electrical and Computer Engineering at UCSB, and PhD student Deblina Sarkar have have proposed a methodology for beating the fundamental limits of a conventional Field-Effect-Transistor (FET) by designing a Tunnel-FET (T-FET) sensor that is faster and four orders of magnitude more sensitive. The details of their study appeared in the April 2, 2012 issue of the journal Applied Physics Letters.

"This study establishes the foundation for a new generation of ultra-sensitive biosensors that expand opportunities for detection of biomolecules at extremely low concentrations," said Samir Mitragotri, professor of Chemical Engineering and director of the Center for Bioengineering at UCSB. "Detection and diagnostics are a key area of bioengineering research at UCSB and this study represents an excellent example of UCSB's multi-faceted competencies in this exciting field."

Biosensors based on conventional FETs have been gaining momentum as a viable technology for the medical, forensic, and security industries since they are cost-effective compared to optical detection procedures. Such biosensors allow for scalability and label-free detection of biomolecules - removing the step and expense of labeling target molecules with fluorescent dye.

The principle behind any FET-based biosensor is similar to the FETs used in digital circuit applications, except that the physical gate is removed and the work of the gate is carried out by charged versions of the biomolecules it intends to detect. For immobilizing these biomolecules, the dielectric surface enclosing the semiconductor is coated with specific receptors, which can bind to the target biomolecules - a process called conjugation.

"The thermionic emission current injection mechanism of conventional FET based biosensors puts fundamental limitations on their maximum sensitivity and minimum detection time," said Banerjee, who conceived the idea in 2009 while studying the design of tunnel-FETs for ultra energy-efficient integrated electronics.

"We overcome these fundamental limitations by making Quantum Physics join hands with Biology" explained Sarkar, the lead author of the paper. "The key concept behind our device is a current injection mechanism that leverages biomolecule conjugation to bend the energy bands in the channel region, leading to the quantum-mechanical phenomenon of band-to-band tunneling. The result is an abrupt increase in current which is instrumental in increasing the sensitivity and reducing the response time of the proposed sensor."

"The abruptness of current increase in an electrical switch is quantified by a parameter called subthreshold swing and the sensitivity of any FET based biosensor increases exponentially as the subthreshold swing decreases. Thus, similar devices such as Impact-ionization- or Nano-electromechanical-FETs are promising for biosensing applications," explained Banerjee. "But since theT-FETs can be easily integrated in the widely available silicon-based semiconductor technology, they can be mass produced in a cost effective manner."

According to the researchers, their T-FET biosensor is expected to have tremendous impact on research in genomics and proteomics, as well as pharmaceutical, clinical and forensic applications - including the growing market of in-vitro and in-vivo diagnostics. Banerjee and Sarkar have filed a patent disclosure for their technology, which the researchers anticipate can be ready for the marketplace in as few as two years.

####

For more information, please click here

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

World's smallest spirals could guard against identity theft June 4th, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

Better sensors for medical imaging, contraband detection: Magnetic-field detector is 1,000 times more efficient than its predecessors April 6th, 2015

Sensors

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

American Chemical Society expands reach to include rapidly emerging area of sensor science July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Discoveries

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Announcements

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project