Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ferroelectric oxides do the twist

Advanced Materials
Engineered electric polarizations are indicated by the gray arrows, a "twisting-like" distortion of the corner-connected oxygen octahedral that is common to many perovskite oxides. First-principles calculations reveal that carefully designed atomic layering, represented by alternating gold and magenta spheres forming an atomic-scale superlattice, allows the octahedral rotations to induce ferroelectricity.
Advanced Materials

Engineered electric polarizations are indicated by the gray arrows, a "twisting-like" distortion of the corner-connected oxygen octahedral that is common to many perovskite oxides. First-principles calculations reveal that carefully designed atomic layering, represented by alternating gold and magenta spheres forming an atomic-scale superlattice, allows the octahedral rotations to induce ferroelectricity.

Abstract:
Some materials, by their nature, do what we want them to do -- notably, the ubiquitous, semiconducting silicon found in almost every electronic device. But sometimes, naturally occurring materials need a little nudge -- or in the case of recent Cornell research, a twist -- to make them useful.

Ferroelectric oxides do the twist

Ithaca, NY | Posted on April 11th, 2012

Assistant professor of applied and engineering physics Craig Fennie and Drexel University's James Rondinelli have published a method for turning a class of ceramic materials called perovskites into a material that's ferroelectric. The work was published April 10 by Advanced Materials and also will be featured on the printed journal's inside cover.

Ferroelectricity is a property in which a spontaneous electric polarization can be flipped by applying a small electric field, useful for low-power memory and switching devices. Traditional ferroelectric mechanisms, however, are often chemically incompatible with such phenomena as ferromagnetism, limiting their use in new types of multifunctional devices.

The researchers' theory-only work, which employed density functional calculations, concluded that ferroelectricity in perovskites can be realized if their atomic structures are manipulated at the nanometer length scale and by slicing them only a few atoms thin, letting the natural twisting of their corner-shared octahedra -- the basic structural unit of perovskite crystals -- do the rest.

The researchers' engineered electric polarizations are the result of stacking chemically different perovskites into atomically thin striped-patterns, which allow their normal rotational patterns to induce ferroelectricity.

"In the past, those rotations and tilts didn't do anything, but by combining them in this way, they can be coupled to an electric field through polarization," Fennie said. "This is the first step in the broad field of using rotations that couple to an applied electric field to control the properties of materials."

Fennie and Rondinelli transformed their theoretical conclusions into experimental guidelines for chemists and materials scientists, with the goal of enabling ferroelectric materials by design.

"The strategy we applied in this work provides a framework for rapid materials discovery of functional properties in a variety of crystal families in advance of materials synthesis," Rondinelli said.

According to Fennie, the work illustrates that theory will play a pivotal role in identifying new material systems for integration into next-generation technologies; theoretical studies of materials are no longer limited to after-the-fact analysis of experimental data.

The research was supported by the U.S. Department of Energy, Basic Energy Sciences.

####

For more information, please click here

Contacts:
Anne Ju


Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic