Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ferroelectric oxides do the twist

Advanced Materials
Engineered electric polarizations are indicated by the gray arrows, a "twisting-like" distortion of the corner-connected oxygen octahedral that is common to many perovskite oxides. First-principles calculations reveal that carefully designed atomic layering, represented by alternating gold and magenta spheres forming an atomic-scale superlattice, allows the octahedral rotations to induce ferroelectricity.
Advanced Materials

Engineered electric polarizations are indicated by the gray arrows, a "twisting-like" distortion of the corner-connected oxygen octahedral that is common to many perovskite oxides. First-principles calculations reveal that carefully designed atomic layering, represented by alternating gold and magenta spheres forming an atomic-scale superlattice, allows the octahedral rotations to induce ferroelectricity.

Abstract:
Some materials, by their nature, do what we want them to do -- notably, the ubiquitous, semiconducting silicon found in almost every electronic device. But sometimes, naturally occurring materials need a little nudge -- or in the case of recent Cornell research, a twist -- to make them useful.

Ferroelectric oxides do the twist

Ithaca, NY | Posted on April 11th, 2012

Assistant professor of applied and engineering physics Craig Fennie and Drexel University's James Rondinelli have published a method for turning a class of ceramic materials called perovskites into a material that's ferroelectric. The work was published April 10 by Advanced Materials and also will be featured on the printed journal's inside cover.

Ferroelectricity is a property in which a spontaneous electric polarization can be flipped by applying a small electric field, useful for low-power memory and switching devices. Traditional ferroelectric mechanisms, however, are often chemically incompatible with such phenomena as ferromagnetism, limiting their use in new types of multifunctional devices.

The researchers' theory-only work, which employed density functional calculations, concluded that ferroelectricity in perovskites can be realized if their atomic structures are manipulated at the nanometer length scale and by slicing them only a few atoms thin, letting the natural twisting of their corner-shared octahedra -- the basic structural unit of perovskite crystals -- do the rest.

The researchers' engineered electric polarizations are the result of stacking chemically different perovskites into atomically thin striped-patterns, which allow their normal rotational patterns to induce ferroelectricity.

"In the past, those rotations and tilts didn't do anything, but by combining them in this way, they can be coupled to an electric field through polarization," Fennie said. "This is the first step in the broad field of using rotations that couple to an applied electric field to control the properties of materials."

Fennie and Rondinelli transformed their theoretical conclusions into experimental guidelines for chemists and materials scientists, with the goal of enabling ferroelectric materials by design.

"The strategy we applied in this work provides a framework for rapid materials discovery of functional properties in a variety of crystal families in advance of materials synthesis," Rondinelli said.

According to Fennie, the work illustrates that theory will play a pivotal role in identifying new material systems for integration into next-generation technologies; theoretical studies of materials are no longer limited to after-the-fact analysis of experimental data.

The research was supported by the U.S. Department of Energy, Basic Energy Sciences.

####

For more information, please click here

Contacts:
Anne Ju


Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project