Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sulfur in every pore: Improved batteries with carbon nanoparticles

Abstract:
From smartphones to e-bikes, the number of mobile electronic devices is steadily growing around the world. As a result, there is an increased need for batteries that are small and light, yet powerful. As the potential for the further improvement of lithium-ion batteries is nearly exhausted, experts are now turning to a new and promising power storage device: lithium-sulfur batteries. In an important step toward the further development of this type of battery, a team led by Professor Thomas Bein of LMU Munich and Linda Nazar of Waterloo University in Canada has developed porous carbon nanoparticles that utilize sulfur molecules to achieve the greatest possible efficiency. (Angewandte Chemie, April 2012)

Sulfur in every pore: Improved batteries with carbon nanoparticles

Munich, Germany | Posted on April 10th, 2012

In prototypes of the lithium-sulfur battery, lithium ions are exchanged between lithium- and sulfur-carbon electrodes. The sulfur plays a special role in this system: Under optimal circumstances, it can absorb two lithium ions per sulfur atom. It is therefore an excellent energy storage material due to its low weight. At the same time, sulfur is a poor conductor, meaning that electrons can only be transported with great difficulty during charging and discharging. To improve this battery's design the scientists at Nanosystems Initiative Munich (NIM) strive to generate sulfur phases with the greatest possible interface area for electron transfer by coupling them with a nanostructured conductive material.

To this end, Thomas Bein and his team at NIM first developed a network of porous carbon nanoparticles. The nanoparticles have 3- to 6-nanometer wide pores, allowing the sulfur to be evenly distributed. In this way, almost all of the sulfur atoms are available to accept lithium ions. At the same time they are also located close to the conductive carbon.

"The sulfur is very accessible electrically in these novel and highly porous carbon nanoparticles and is stabilized so that we can achieve a high initial capacity of 1200 mAh/g and good cycle stability," explains Thomas Bein. "Our results underscore the significance of nano-morphology for the performance of new energy storage concepts."

The carbon structure also reduces the so-called polysulfide problem. Polysulfides form as intermediate products of the electrochemical processes and can have a negative impact on the charging and discharging of the battery. The carbon network binds the polysulfides, however, until their conversion to the desired dilithium sulfide is achieved. The scientists were also able to coat the carbon material with a thin layer of silicon oxide which protects against polysulfides without reducing conductivity.

Incidentally, the scientists have also set a record with their new material: According to the latest data, their material has the largest internal pore volume (2.32 cm3/g) of all mesoporous carbon nanoparticles, and an extremely large surface area of 2445 m2/g. This corresponds roughly to an object with the volume of a sugar cube and the surface of ten tennis courts. Large surface areas like this might soon be hidden inside our batteries.

Publication:
"Spherical Ordered Mesoporous Carbon Nanoparticles with Extremely High Porosity for Lithium-Sulfur Batteries". Jörg Schuster, Guang He, Benjamin Mandlmeier, Taeeun Yim, Kyu Tae Lee, Thomas Bein and Linda F. Nazar.
In: Angewandte Chemie, Article first published online: 1 MAR 2012
doi: 10.1038/nm.2720

####

For more information, please click here

Contacts:
Dr. Kathrin Bilgeri

49-892-180-6938

Prof. Thomas Bein
Chair of Physical Chemistry
Phone: +49 89 2180 77621

Web: http://bein.cup.uni-muenchen.de

Copyright © Ludwig-Maximilians-Universität München

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stretchy supercapacitors power wearable electronics August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic