Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Thomas Swan joins graphene development race

Abstract:
The UK's leading manufacturer of high purity single-wall carbon nanotubes has announced a 4 year, £625K collaboration with the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) at Trinity College Dublin to develop a scalable manufacturing process for high purity graphene.

Thomas Swan joins graphene development race

Consett, UK, | Posted on April 4th, 2012

The 4 year collaboration with CRANN, the Science Foundation Ireland (SFI) funded nanoscience institute based at Trinity College Dublin, will focus on the industrial scale-up of consistent, high purity graphene production.

Graphene is the wonder material of modern science and was the focus of the Nobel Prize in 2010. It has unique properties and is both the strongest and most conductive material known to man. There are many potential applications for graphene including next generation electronic devices, mechanically strengthened plastics and new thermoelectric materials.

CRANN's research in the field of graphene production is led by Professor Jonathan Coleman, who was named as SFI Researcher of the Year in 2011 and is also recognised as one of the top 100 material scientists of the last decade. There is currently no method to produce high quality pure graphene on an industrial scale and the collaboration between CRANN and Thomas Swan aims to address this problem. CRANN has been identified by Thomas Swan as the leading academic research site globally for solution processing of graphene and the partner of choice around this challenging research area.
Thomas Swan, in addition to funding the research programme, will place an engineer to work with Professor Coleman's team for two years.

Commenting on the partnership, Harry Swan, Managing Director, Thomas Swan, said, "We are delighted to be working with CRANN and Trinity College Dublin on such an exciting project. Graphene is a fascinating material and our aim, as it was with carbon nanotubes, is to provide a stable and consistent source of true graphene to academia and industry as downstream research develops future commercial applications. CRANN and Professor Coleman's team at Trinity College Dublin were a clear choice as the centre of excellence for us to approach and I look forward to developing a scalable production route of true, high purity graphene. We are anticipating initial lab samples within the next few months and will invite interested parties to assess our material as soon as it is available."

Dr Diarmuid O'Brien, Executive Director of CRANN, added, "This collaborative research programme with Thomas Swan underlines the strength of our industry engagement programme, which is bringing significant non-exchequer funding into CRANN and research in Ireland. It clearly demonstrates how CRANN has become a global focus point for both academic and industrial partnership. This international success has been built on the back of continuous funding for research excellence from the Irish State through Science Foundation Ireland."

Professor Coleman added, "I am delighted with our partnership with Thomas Swan as it will lead to the commercialisation of my research and is a very fulfilling achievement after many years of work. This will ultimately result in the production of graphene on an industrial scale, which we believe can compete with silicon for use in electronics and can contribute to an explosion in the development of a range of new materials."

Graphene consists of a sheet of carbon atoms, just one atom thick or about one hundred-thousandth the width of one human hair. It is very strong and has excellent electrical conductivity which makes it a potential candidate for incorporation into a range of materials including thermoelectric devices, sensors and as a substitute for plastic in a range of products, from household goods to aeroplanes.

####

About Thomas Swan & Co Ltd
Founded in the United Kingdom in 1926, Thomas Swan & Co. Ltd. is a leading independent manufacturer of performance and speciality chemicals. The company manufactures over 100 products, from kilogramme to multi-tonne quantities, and offers an experienced and flexible custom manufacturing service. With offices in the USA and China and a global network of distributors, Thomas Swan exports to over 80 countries worldwide and is well placed to service the UK and international markets.

Thomas Swan & Co. Ltd. was founded by ‘Tommy’ Swan at its present site in Consett, County Durham in the North East of England. From early beginnings as a road surfacing company, using the waste product (slag) from the local steel industry as a raw material, Thomas Swan has diversified into a wide range of performance chemical products and processes.

The development of a graphene manufacturing process is the latest venture for the company’s Advanced Materials Division which already manufactures industrial grades of single-wall carbon nanomaterials under the Elicarb® brand.

About CRANN:

The Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) is Trinity College Dublin’s largest research institute and a Science Foundation Ireland (SFI) funded Centre for Science, Engineering and Technology (CSET) which partners with University College Cork. CRANN is focused on delivering world leading research and innovation – through extensive proactive collaborations with industry and through commercialisation of intellectual property. Since its foundation, CRANN has obtained €200M of competitive funding from Government, Industry, the European Union and Philanthropy. CRANN is comprised of a team of over 300 researchers, led by 20 Principal Investigators (PIs), each of whom is an internationally recognised expert in their field of research. It is interdisciplinary working in partnership with the Schools of Physics, Chemistry, Pharmacy and Pharmaceutical Science, Medicine and Engineering based at Trinity College Dublin as well as the School of Chemistry at University College Cork. CRANN is also co-host to CCAN, the Competence Centre for Applied Nanotechnology which facilitates industry collaboration to develop nano-enabled solutions for Irish-based companies.

For more information, please click here

Contacts:
Thomas Swan & Co. Ltd.
Harry Swan
+44(0)1207 505 131


CRANN
Piaras Kelly/Grace Milton
Edelman
01 6789333
/

David W. Spragg
Orchard Resourcebase Ltd
9 Chapel Street
Thirsk
N. Yorks Y07 1LU, UK
DL +44 (0)1845 573241
T +44 (0)1845 527766
F +44 (0)1845 527744

Copyright © Thomas Swan & Co Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Graphene/ Graphite

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Products

Oxford Nanoimaging to provide desktop super-resolution microscopes May 10th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 10th, 2016

Academic/Education

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Sensors

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Materials/Metamaterials

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Carbodeon Ltd Oy Closes EUR 1.5 million Funding Round From Straightforward Capital: Carbodeon will accelerate its nanodiamonds business and expand manufacturing capacity August 21st, 2016

Announcements

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Aerospace/Space

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

To Infinity and Beyond with Nanosatellites August 10th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

PPPL applies quantum theory and Einstein's special relativity to plasma physics issues July 31st, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Research partnerships

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic