Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Novel Filter Material Could Cut Natural Gas Refining Costs

Iron projecting into the pore of the tubelike metal-organic framework (center, looking down its roughly nanometer-wide opening) attracts the light hydrocarbon molecules that surround it to varying degrees. These varied attraction levels could make the framework more efficient at hydrocarbon separation than current refinery processes.
Credit: Queen/NIST
Iron projecting into the pore of the tubelike metal-organic framework (center, looking down its roughly nanometer-wide opening) attracts the light hydrocarbon molecules that surround it to varying degrees. These varied attraction levels could make the framework more efficient at hydrocarbon separation than current refinery processes.

Credit: Queen/NIST

Abstract:
Measurements taken by a team including National Institute of Standards and Technology (NIST) scientists show that a newly devised material has the ability to separate closely related components of natural gas from one another, a task that currently demands a good deal of energy to accomplish. The results, published March 30, 2012, in the journal Science, might improve the efficiency of the distillation process.

Novel Filter Material Could Cut Natural Gas Refining Costs

Gaithersburg, MD | Posted on April 2nd, 2012

The material is a new type of metal-organic framework (MOF), a class of materials whose high surface area and tunable properties make them promising for applications as varied as gas storage, catalysis and drug delivery. This particular iron-based MOF, which the research team refers to as Fe-MOF-74, was built in the lab of Jeffrey Long, a professor of chemistry at the University of California Berkeley, and analyzed by the team at NIST and the Australian Nuclear Science and Technology Organisation's Bragg Institute.

Natural gas taken straight from the ground consists of a complex mixture of molecules called hydrocarbons, only some of which are needed for use in any specific product such as fuel or plastic. Separating the lighter types of hydrocarbon from one another—propane and ethylene, for example—is difficult because their weights are so similar. Currently, the most effective separation method involves chilling light hydrocarbons down to the point where they

all liquefy, sometimes as low as 100 degrees below zero Celsius, and waiting until the heavier liquids settle below the lighter ones.

"A good percentage of the energy needed for separation goes to the cooling process," says Wendy Queen, a postdoctoral fellow at the NIST Center for Neutron Research. "A material that can selectively adsorb light hydrocarbons could offer significant energy savings, making separation more economical."

Through a microscope, Fe-MOF-74 looks like a collection of narrow tubes packed together like drinking straws in a box. Each tube is made of organic materials and six long strips of iron, which run lengthwise along the tube. The team's analysis shows that different light hydrocarbons have varied levels of attraction to the tubes' iron, a finding that can be exploited for separation. By passing a mixed-hydrocarbon gas through a series of filters made of the tubes, the hydrocarbon with the strongest affinity can be removed in the first filter layer, the next strongest in the second layer, and so forth.

"It works well at 45 degrees Celsius, which is closer to the temperature of hydrocarbons at some points in the distillation process," Queen says. "The upshot is that if we can bring the MOF to market as a filtration device, the energy-intensive cooling step potentially can be eliminated. We are now trying out metals other than iron in the MOF in case we can find one that works even better."

* E.D. Bloch, W.L. Queen, R.Krishna, J.M. Zadrozny, C.M. Brown and J.R. Long. Hydrocarbon separations in a metal-organic framework with open Iron(II) coordination sites. Science, March 30, 2012. DOI:\10.1126\science.1217544

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

Laboratories

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Govt.-Legislation/Regulation/Funding/Policy

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Discoveries

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Materials/Metamaterials

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Announcements

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Energy

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project