Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Novel Filter Material Could Cut Natural Gas Refining Costs

Iron projecting into the pore of the tubelike metal-organic framework (center, looking down its roughly nanometer-wide opening) attracts the light hydrocarbon molecules that surround it to varying degrees. These varied attraction levels could make the framework more efficient at hydrocarbon separation than current refinery processes.
Credit: Queen/NIST
Iron projecting into the pore of the tubelike metal-organic framework (center, looking down its roughly nanometer-wide opening) attracts the light hydrocarbon molecules that surround it to varying degrees. These varied attraction levels could make the framework more efficient at hydrocarbon separation than current refinery processes.

Credit: Queen/NIST

Abstract:
Measurements taken by a team including National Institute of Standards and Technology (NIST) scientists show that a newly devised material has the ability to separate closely related components of natural gas from one another, a task that currently demands a good deal of energy to accomplish. The results, published March 30, 2012, in the journal Science, might improve the efficiency of the distillation process.

Novel Filter Material Could Cut Natural Gas Refining Costs

Gaithersburg, MD | Posted on April 2nd, 2012

The material is a new type of metal-organic framework (MOF), a class of materials whose high surface area and tunable properties make them promising for applications as varied as gas storage, catalysis and drug delivery. This particular iron-based MOF, which the research team refers to as Fe-MOF-74, was built in the lab of Jeffrey Long, a professor of chemistry at the University of California Berkeley, and analyzed by the team at NIST and the Australian Nuclear Science and Technology Organisation's Bragg Institute.

Natural gas taken straight from the ground consists of a complex mixture of molecules called hydrocarbons, only some of which are needed for use in any specific product such as fuel or plastic. Separating the lighter types of hydrocarbon from one another—propane and ethylene, for example—is difficult because their weights are so similar. Currently, the most effective separation method involves chilling light hydrocarbons down to the point where they

all liquefy, sometimes as low as 100 degrees below zero Celsius, and waiting until the heavier liquids settle below the lighter ones.

"A good percentage of the energy needed for separation goes to the cooling process," says Wendy Queen, a postdoctoral fellow at the NIST Center for Neutron Research. "A material that can selectively adsorb light hydrocarbons could offer significant energy savings, making separation more economical."

Through a microscope, Fe-MOF-74 looks like a collection of narrow tubes packed together like drinking straws in a box. Each tube is made of organic materials and six long strips of iron, which run lengthwise along the tube. The team's analysis shows that different light hydrocarbons have varied levels of attraction to the tubes' iron, a finding that can be exploited for separation. By passing a mixed-hydrocarbon gas through a series of filters made of the tubes, the hydrocarbon with the strongest affinity can be removed in the first filter layer, the next strongest in the second layer, and so forth.

"It works well at 45 degrees Celsius, which is closer to the temperature of hydrocarbons at some points in the distillation process," Queen says. "The upshot is that if we can bring the MOF to market as a filtration device, the energy-intensive cooling step potentially can be eliminated. We are now trying out metals other than iron in the MOF in case we can find one that works even better."

* E.D. Bloch, W.L. Queen, R.Krishna, J.M. Zadrozny, C.M. Brown and J.R. Long. Hydrocarbon separations in a metal-organic framework with open Iron(II) coordination sites. Science, March 30, 2012. DOI:\10.1126\science.1217544

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Laboratories

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Materials/Metamaterials

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Energy

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE