Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Tunable' metal nanostructures for fuel cells, batteries and solar energy

Wiesner Lab
Samples of self-assembled metal-containing films made by the new sol-gel process. The films are essentially glass in which metal atoms are suspended, which imparts the color., Grid lines are 5 mm apart.
Wiesner Lab

Samples of self-assembled metal-containing films made by the new sol-gel process. The films are essentially glass in which metal atoms are suspended, which imparts the color., Grid lines are 5 mm apart.

Abstract:
For catalysts in fuel cells and electrodes in batteries, engineers would like to manufacture metal films that are porous, to make more surface area available for chemical reactions, and highly conductive, to carry off the electricity. The latter has been a frustrating challenge.

'Tunable' metal nanostructures for fuel cells, batteries and solar energy

Ithaca, NY | Posted on April 2nd, 2012

But Cornell chemists have now developed a way to make porous metal films with up to 1,000 times the electrical conductivity offered by previous methods. Their technique also opens the door to creating a wide variety of metal nanostructures for engineering and biomedical applications, the researchers said.

The results of several years of experimentation are described March 18 online edition of the journal Nature Materials.

"We have reached unprecedented levels of control on composition, nanostructure and functionality -- for example, conductivity -- of the resulting materials, all with a simple 'one-pot' mix-and-heat approach," said senior author Ulrich Wiesner, the Spencer T. Olin Professor of Engineering.

The new method builds on the "sol-gel process," already familiar to chemists. Certain compounds of silicon mixed with solvents will self-assemble into a structure of silicon dioxide (i.e., glass) honeycombed with nanometer-scaled pores. The challenge facing the researchers was to add metal to create a porous structure that conducts electricity.

About 10 years ago, Wiesner's research group, collaborating with the Cornell Fuel Cell Institute, tried using the sol-gel process with the catalysts that pull protons off of fuel molecules to generate electricity. They needed materials that would pass high current, but adding more than a small amount of metal disrupted the sol-gel process, explained Scott Warren, first author of the Nature Materials paper.

Warren, who was then a Ph.D. student in Wiesner's group and is now a researcher at Northwestern University, hit on the idea of using an amino acid to link metal atoms to silica molecules, because he had realized that one end of the amino acid molecule has an affinity for silica and the other end for metals.

"If there was a way to directly attach the metal to the silica sol-gel precursor then we would prevent this phase separation that was disrupting the self-assembly process," he explained.

The immediate result is a nanostructure of metal, silica and carbon, with much more metal than had been possible before, greatly increasing conductivity. The silica and carbon can be removed, leaving porous metal. But a silica-metal structure would hold its shape at the high temperatures found in some fuel cells, Warren noted, and removing just the silica to leave a carbon-metal complex offers other possibilities, including larger pores.

The researchers report a wide range of experiments showing that their process can be used to make "a library of materials with a high degree of control over composition and structure." They have built structures of almost every metal in the periodic table, and with additional chemistry can "tune" the dimensions of the pores in a range from 10 to 500 nanometers. They have also made metal-filled silica nanoparticles small enough to be ingested and secreted by humans, with possible biomedical applications. Wiesner's group is also known for creating "Cornell dots," which encapsulate dyes in silica nanoparticles, so a possible future application of the sol-gel process might be to build Graetzel solar cells, which contain light-sensitive dyes. Michael Graetzel of the École Polytechnique Fédérale de Lausanne and innovator of the Graetzel cell is a co-author of the new paper. The measurement of the record-setting electrical conductivity was performed in his laboratory.

The research has been supported by the Department of Energy and, through several channels, the National Science Foundation.

####

For more information, please click here

Contacts:
Bill Steele

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Self Assembly

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Discoveries

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Announcements

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Fuel Cells

Expanding the reach of metallic glass April 22nd, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Research could usher in next generation of batteries, fuel cells University of South Carolina and Clemson reseachers uncover clean interfaces April 10th, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project