Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stanford's Global Climate and Energy Project awards $8.4 million to develop innovative energy technologies: GCEP has awarded $8.4 million to researchers from Stanford to develop innovative technologies that address global climate change

Stanford engineer Zhenan Bao and colleagues received a GCEP award to develop solar cells made of carbon nanotubes and other carbon-based nanomaterials.
Stanford engineer Zhenan Bao and colleagues received a GCEP award to develop solar cells made of carbon nanotubes and other carbon-based nanomaterials.

Abstract:
The Global Climate and Energy Project (GCEP) at Stanford University has awarded $8.4 million to seven Stanford research teams to develop new technologies that could significantly lower greenhouse gas emissions.

Stanford's Global Climate and Energy Project awards $8.4 million to develop innovative energy technologies: GCEP has awarded $8.4 million to researchers from Stanford to develop innovative technologies that address global climate change

Stanford, CA | Posted on March 29th, 2012

By Mark Shwartz

"These awards support fundamental research on a broad range of potentially game-changing energy technologies - from an all-carbon solar cell to a soot-free diesel combustion process," said GCEP Director Sally Benson, a research professor of energy resources engineering at Stanford.

The awards bring the total number of GCEP-supported research programs to 93, with total funding of approximately $113 million for research since the project's launch in 2002.

The following seven research programs will be led by 11 investigators from the Stanford School of Engineering and the SLAC National Accelerator Laboratory:

Improved solar energy conversion: To make photovoltaic cells more efficient, the researchers propose creating a new kind of electrode that converts photons from low-energy to high-energy states. Investigators: Jennifer Dionne and Alberto Salleo, Materials Science and Engineering (MSE).

Sootless diesel: Researchers are developing a novel technology that transforms diesel combustion into a clean, highly efficient process that emits no soot. Investigator: Chris Edwards, Mechanical Engineering.

Hydrogen production from glucose: The goal is to develop a new chemical process to convert sugars derived from plants into hydrogen, which can then be used as a clean-burning substitute for natural gas. Investigator: James Swartz, Chemical Engineering and Bioengineering.

High-power batteries for the electric grid: Researchers propose a new family of inexpensive, long-life, high-power batteries to address the challenge of intermittent renewable energy on the electric grid. Investigators: Robert Huggins, MSE; and Yi Cui, MSE and Photon Science/SLAC.

Methane from microbes: The research team is designing a "living" fuel cell that uses bacteria and other microbes to convert electricity and carbon dioxide into methane gas. Investigator: Alfred Spormann, Chemical Engineering/Civil and Environmental Engineering.

New materials for energy conversion applications: The goal is to identify new thermally and chemically stable nanomaterials that efficiently convert heat into electricity. Investigators: Roger Howe, Electrical Engineering; Jens K. NÝrskov, Chemical Engineering and Photon Science/SLAC; and Piero Pianetta, Electrical Engineering and Photon Science/SLAC.

Carbon solar cells: The goal of the proposal is to design and build photovoltaic cells made of carbon-based materials. Investigator: Zhenan Bao, Chemical Engineering.

"Silicon has been the dominant material used in the solar cell industry for decades," said Bao, associate professor of chemical engineering. "This GCEP award will allow us to begin developing new types of solar cells made primarily with carbon nanomaterials, which are extraordinary electron transporters and ideal for capturing the full solar spectrum - from visible light into the near infrared."

GCEP is an industry partnership that supports innovative research on energy technologies that address the challenge of global climate change. Based at Stanford, the project includes five corporate sponsors - ExxonMobil, GE, Schlumberger, Toyota and DuPont.

"We are very pleased to announce the latest round of awards to leading members of the Stanford faculty," said Schlumberger Vice President Rod Nelson, the chair of the GCEP management committee. "These seven programs exemplify the kind of high-risk, high-reward energy research that has become the hallmark of the GCEP partnership."

####

For more information, please click here

Contacts:
Sally Benson
Global Climate and Energy Project:
(650) 725-0358


Mark Shwartz
Precourt Institute for Energy:
(650) 723-9296


Maxine Lym
Global Climate and Energy Project:
(650) 725-3228


Dan Stober
Stanford News Service:
(650) 721-6965

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Laboratories

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Energy

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Canadian physicists discover new properties of superconductivity February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Solar/Photovoltaic

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic