Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stanford's Global Climate and Energy Project awards $8.4 million to develop innovative energy technologies: GCEP has awarded $8.4 million to researchers from Stanford to develop innovative technologies that address global climate change

Stanford engineer Zhenan Bao and colleagues received a GCEP award to develop solar cells made of carbon nanotubes and other carbon-based nanomaterials.
Stanford engineer Zhenan Bao and colleagues received a GCEP award to develop solar cells made of carbon nanotubes and other carbon-based nanomaterials.

Abstract:
The Global Climate and Energy Project (GCEP) at Stanford University has awarded $8.4 million to seven Stanford research teams to develop new technologies that could significantly lower greenhouse gas emissions.

Stanford's Global Climate and Energy Project awards $8.4 million to develop innovative energy technologies: GCEP has awarded $8.4 million to researchers from Stanford to develop innovative technologies that address global climate change

Stanford, CA | Posted on March 29th, 2012

By Mark Shwartz

"These awards support fundamental research on a broad range of potentially game-changing energy technologies - from an all-carbon solar cell to a soot-free diesel combustion process," said GCEP Director Sally Benson, a research professor of energy resources engineering at Stanford.

The awards bring the total number of GCEP-supported research programs to 93, with total funding of approximately $113 million for research since the project's launch in 2002.

The following seven research programs will be led by 11 investigators from the Stanford School of Engineering and the SLAC National Accelerator Laboratory:

Improved solar energy conversion: To make photovoltaic cells more efficient, the researchers propose creating a new kind of electrode that converts photons from low-energy to high-energy states. Investigators: Jennifer Dionne and Alberto Salleo, Materials Science and Engineering (MSE).

Sootless diesel: Researchers are developing a novel technology that transforms diesel combustion into a clean, highly efficient process that emits no soot. Investigator: Chris Edwards, Mechanical Engineering.

Hydrogen production from glucose: The goal is to develop a new chemical process to convert sugars derived from plants into hydrogen, which can then be used as a clean-burning substitute for natural gas. Investigator: James Swartz, Chemical Engineering and Bioengineering.

High-power batteries for the electric grid: Researchers propose a new family of inexpensive, long-life, high-power batteries to address the challenge of intermittent renewable energy on the electric grid. Investigators: Robert Huggins, MSE; and Yi Cui, MSE and Photon Science/SLAC.

Methane from microbes: The research team is designing a "living" fuel cell that uses bacteria and other microbes to convert electricity and carbon dioxide into methane gas. Investigator: Alfred Spormann, Chemical Engineering/Civil and Environmental Engineering.

New materials for energy conversion applications: The goal is to identify new thermally and chemically stable nanomaterials that efficiently convert heat into electricity. Investigators: Roger Howe, Electrical Engineering; Jens K. NÝrskov, Chemical Engineering and Photon Science/SLAC; and Piero Pianetta, Electrical Engineering and Photon Science/SLAC.

Carbon solar cells: The goal of the proposal is to design and build photovoltaic cells made of carbon-based materials. Investigator: Zhenan Bao, Chemical Engineering.

"Silicon has been the dominant material used in the solar cell industry for decades," said Bao, associate professor of chemical engineering. "This GCEP award will allow us to begin developing new types of solar cells made primarily with carbon nanomaterials, which are extraordinary electron transporters and ideal for capturing the full solar spectrum - from visible light into the near infrared."

GCEP is an industry partnership that supports innovative research on energy technologies that address the challenge of global climate change. Based at Stanford, the project includes five corporate sponsors - ExxonMobil, GE, Schlumberger, Toyota and DuPont.

"We are very pleased to announce the latest round of awards to leading members of the Stanford faculty," said Schlumberger Vice President Rod Nelson, the chair of the GCEP management committee. "These seven programs exemplify the kind of high-risk, high-reward energy research that has become the hallmark of the GCEP partnership."

####

For more information, please click here

Contacts:
Sally Benson
Global Climate and Energy Project:
(650) 725-0358


Mark Shwartz
Precourt Institute for Energy:
(650) 723-9296


Maxine Lym
Global Climate and Energy Project:
(650) 725-3228


Dan Stober
Stanford News Service:
(650) 721-6965

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

Nanotubes/Buckyballs/Fullerenes

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Energy

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

One step closer to reality: Devices that convert heat into electricity: Composite material yields 10 times -- or higher -- voltage output January 4th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Solar/Photovoltaic

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project