Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Green Nanotechnology Investment: Researchers Help Assess Economic Impact of Nanotech on Green & Sustainable Growth

Image shows nanogenerators developed in the laboratory of Zhong Lin Wang at the Georgia Institute of Technology.  Credit: Gary Meek
Image shows nanogenerators developed in the laboratory of Zhong Lin Wang at the Georgia Institute of Technology.

Credit: Gary Meek

Abstract:
In the United States alone, government and private industry together invest more than $3 billion per year in nanotechnology research and development, and globally the total is much higher. What will be the long-run economic returns from these investments, not only in new jobs and product sales, but also from improvements in sustainability?

Green Nanotechnology Investment: Researchers Help Assess Economic Impact of Nanotech on Green & Sustainable Growth

Atlanta, GA | Posted on March 28th, 2012

Georgia Institute of Technology researchers Philip Shapira and Jan Youtie helped answer that question through research presented March 27th at the International Symposium on Assessing the Economic Impact of Nanotechnology held in Washington, D.C. The researchers highlighted the importance of full lifecycle assessments to understand the impacts of nanotechnologies on green economic development in such areas as energy, the environment and safe drinking water.



"Nanotechnology promises to foster green and sustainable growth in many product and process areas," said Shapira, a professor with Georgia Tech's School of Public Policy and the Manchester Institute of Innovation Research at the Manchester Business School in the United Kingdom. "Although nanotechnology commercialization is still in its early phases, we need now to get a better sense of what markets will grow and how new nanotechnology products will impact sustainability. This includes balancing gains in efficiency and performance against the net energy, environmental, carbon and other costs associated with the production, use and end-of-life disposal or recycling of nanotechnology products."



But because nanotechnology underlies many different industries, assessing and forecasting its impact won't be easy. "Compared to information technology and biotechnology, for example, nanotechnology has more of the characteristics of a general technology such as the development of electric power," said Youtie, director of policy research services at Georgia Tech's Enterprise Innovation Institute. "That makes it difficult to analyze the value of products and processes that are enabled by the technology. We hope that our paper will provide background information and help frame the discussion about making those assessments."



The symposium is sponsored by the Organization for Economic Cooperation and Development and by the U.S. National Nanotechnology Initiative. Support for Georgia Tech research into the societal impacts of nanotechnology has come from the National Science Foundation through the Center for Nanotechnology in Society based at Arizona State University.



For their paper, co-authors Shapira and Youtie examined a subset of green nanotechnologies that aim to enable sustainable energy, improve environmental quality, and provide healthy drinking water for areas of the world that now lack it. They argue that the lifecycle of nanotechnology products must be included in the assessment.



"In examining the economic impact of these green nanotechnologies, we have to consider the lifecycle, which includes such issues as environmental health and safety, as well as the amount of energy required to produce materials such as carbon nanotubes," said Shapira.



Environmental concerns have been raised about what happens to nanomaterials when they get into water supplies, he noted. In addition, some nanostructures use toxic elements such as cadmium. Energy required for producing nano-enabled products is also an important consideration, though it may be balanced against the energy saved - and pollution reduced - through the use of such products, Shapira said.



Research into these societal issues, which is being conducted in parallel with the research and development of nanotechnology - may allow the resulting nano-enabled products to avoid the kinds of the controversies that have hindered earlier technologies.



"Scientists, policy-makers and other observers have found that some of the promise of prior rounds of technology was limited by not anticipating and considering societal concerns prior to the introduction of new products," Youtie said. "For nanotechnology, it is vital that these issues are being considered even during the research and development stage, before products hit the market in significant quantities."



The nanotechnology industry began with large companies that had the resources to invest in research and development. But that is now changing, Youtie said.



"A lot of small companies are involved in novel nanomaterials development," she said. "Large companies often focus on integrating those nanomaterials into existing products or processes."



Among the goals of the OECD symposium are development of methodologies and approaches for estimating the impacts of green nanotechnology on jobs and new product sales. Existing forecasts have come largely from proprietary models used by private-sector firms.



"While these private forecasts have high visibility, their information and methods are often proprietary," Shapira noted. "We also need to develop open and peer-reviewed models in which approaches are transparent and everyone can see the methods and assumptions used."



In their paper, Youtie and Shapira cite several examples of green nanotechnology, discuss the potential impacts of the technology, and review forecasts that have been made. Examples of green nanotechnology they cite include:



Nano-enabled solar cells that use lower-cost organic materials, as opposed to current photovoltaic technologies that require rare materials such as platinum;

Nanogenerators that use piezoelectric materials such as zinc oxide nanowires to convert human movement into energy;

Energy storage applications in which nanotechnology materials improve existing batteries and nano-enabled fuel cells;

Thermal energy applications, such as nano-enabled insulation;

Fuel catalysis in which nanoparticles improve the production and refining of fuels and reduce emissions from automobiles;

Technologies used to provide safe drinking water through improved water treatment, desalination and reuse.

####

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA

Media Relations Contacts:
John Toon
404-894-6986


Abby Robinson
404-385-3364

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Possible Futures

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Water

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Water, water -- the two types of liquid water: Understanding water's behavior could help with Alzheimer's research November 11th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Home

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Lucintel identifies and prioritizes opportunities for alumina trihydrate (ATH) fillers in the global composites industry August 3rd, 2016

Industrial

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Forge Nano raises $20 million in Series A Funding: Nano coating technology innovator Forge Nano will use funding to expand manufacturing capacity and grow Lithium-Ion battery opportunities November 3rd, 2016

SUN shares its latest achievements during the 3rd Annual Project Meeting November 1st, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

A Phone That Charges in Seconds? UCF Scientists Bring it Closer to Reality November 21st, 2016

Fuel Cells

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project