Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers use nanoparticles, magnetic current to damage cancerous cells in mice

Qun Zhao, assistant professor of physics in the Franklin College of Arts and Sciences, explains his latest research with nanoparticles and hyperthermia cancer treatment.
Qun Zhao, assistant professor of physics in the Franklin College of Arts and Sciences, explains his latest research with nanoparticles and hyperthermia cancer treatment.

Abstract:
Using nanoparticles and alternating magnetic fields, University of Georgia scientists have found that head and neck cancerous tumor cells in mice can be killed in half an hour without harming healthy cells.

Researchers use nanoparticles, magnetic current to damage cancerous cells in mice

Athens, GA | Posted on March 27th, 2012

The findings, published recently in the journal Theranostics, mark the first time to the researchers' knowledge this cancer type has been treated using magnetic iron oxide nanoparticle-induced hyperthermia, or above-normal body temperatures, in laboratory mice.

"We show that we can use a small concentration of nanoparticles to kill the cancer cells," said Qun Zhao, lead author and assistant professor of physics in the Franklin College of Arts and Sciences. Researchers found that the treatment easily destroyed the cells of cancerous tumors that were composed entirely of a type of tissue that covers the surface of a body, which is also known as epithelium.

Several researchers around the globe are exploring the use of heated nanoparticles as a potential cancer treatment. Previous studies also have shown that high temperatures created by combining magnetic iron oxide nanoparticles with strong alternating magnetic currents can create enough heat to kill tumor cells. Zhao said he is optimistic about his findings, but explained that future studies will need to include larger animals before a human clinical trial could be considered.

For the experiment, researchers injected a tiny amount—a tenth of a teaspoon, or 0.5 milliliter—of nanoparticle solution directly into the tumor site. With the mouse relaxed under anesthesia, they placed the animal in a plastic tube wrapped with a wire coil that generated magnetic fields that alternated directions 100,000 times each second. The magnetic fields produced by the wire coil heated only the concentrated nanoparticles within the cancerous tumor and left the surrounding healthy cells and tissue unharmed.

Zhao said the study paves the way for additional research that might investigate how to use a biodegradable nanoparticle material similar to magnetic iron oxide for other roles in fighting cancer, such as carrying and delivering anti-cancer drugs to the tumor site.

"When the cancer cell is experiencing this heated environment, then it becomes more susceptible to drugs," Zhao said.

Magnetic iron oxide nanoparticles could be useful in improving the contrast in magnetic resonance imaging at a cancer site, he said. In other words, the nanoparticles could help physicians detect cancer even if the cancer is not visible to the naked eye with an MRI scan.

"The reason I am interested in using these magnetic nanoparticles is because we hope to one day be able to offer diagnosis and therapeutics, or theranostics, using a single agent," Zhao said.

The research was supported by a National Cancer Institute Head and Neck Specialized Program of Research Excellence at Emory University.

The paper's additional authors are Luning Wang, Rui Cheng, Leidong Mao, Robert Arnold, Simon Platt and Elizabeth W. Howerth, all of UGA, and Zhuo G. Chen of Emory University.

####

For more information, please click here

Contacts:
Qun Zhao

706-583-5558

Copyright © University of Georgia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Discoveries

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Research partnerships

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project