Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers use nanoparticles, magnetic current to damage cancerous cells in mice

Qun Zhao, assistant professor of physics in the Franklin College of Arts and Sciences, explains his latest research with nanoparticles and hyperthermia cancer treatment.
Qun Zhao, assistant professor of physics in the Franklin College of Arts and Sciences, explains his latest research with nanoparticles and hyperthermia cancer treatment.

Abstract:
Using nanoparticles and alternating magnetic fields, University of Georgia scientists have found that head and neck cancerous tumor cells in mice can be killed in half an hour without harming healthy cells.

Researchers use nanoparticles, magnetic current to damage cancerous cells in mice

Athens, GA | Posted on March 27th, 2012

The findings, published recently in the journal Theranostics, mark the first time to the researchers' knowledge this cancer type has been treated using magnetic iron oxide nanoparticle-induced hyperthermia, or above-normal body temperatures, in laboratory mice.

"We show that we can use a small concentration of nanoparticles to kill the cancer cells," said Qun Zhao, lead author and assistant professor of physics in the Franklin College of Arts and Sciences. Researchers found that the treatment easily destroyed the cells of cancerous tumors that were composed entirely of a type of tissue that covers the surface of a body, which is also known as epithelium.

Several researchers around the globe are exploring the use of heated nanoparticles as a potential cancer treatment. Previous studies also have shown that high temperatures created by combining magnetic iron oxide nanoparticles with strong alternating magnetic currents can create enough heat to kill tumor cells. Zhao said he is optimistic about his findings, but explained that future studies will need to include larger animals before a human clinical trial could be considered.

For the experiment, researchers injected a tiny amount—a tenth of a teaspoon, or 0.5 milliliter—of nanoparticle solution directly into the tumor site. With the mouse relaxed under anesthesia, they placed the animal in a plastic tube wrapped with a wire coil that generated magnetic fields that alternated directions 100,000 times each second. The magnetic fields produced by the wire coil heated only the concentrated nanoparticles within the cancerous tumor and left the surrounding healthy cells and tissue unharmed.

Zhao said the study paves the way for additional research that might investigate how to use a biodegradable nanoparticle material similar to magnetic iron oxide for other roles in fighting cancer, such as carrying and delivering anti-cancer drugs to the tumor site.

"When the cancer cell is experiencing this heated environment, then it becomes more susceptible to drugs," Zhao said.

Magnetic iron oxide nanoparticles could be useful in improving the contrast in magnetic resonance imaging at a cancer site, he said. In other words, the nanoparticles could help physicians detect cancer even if the cancer is not visible to the naked eye with an MRI scan.

"The reason I am interested in using these magnetic nanoparticles is because we hope to one day be able to offer diagnosis and therapeutics, or theranostics, using a single agent," Zhao said.

The research was supported by a National Cancer Institute Head and Neck Specialized Program of Research Excellence at Emory University.

The paper's additional authors are Luning Wang, Rui Cheng, Leidong Mao, Robert Arnold, Simon Platt and Elizabeth W. Howerth, all of UGA, and Zhuo G. Chen of Emory University.

####

For more information, please click here

Contacts:
Qun Zhao

706-583-5558

Copyright © University of Georgia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Nanomedicine

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Discoveries

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Research partnerships

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE