Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Radboud University Nijmegen applies nanoparticle tracking analysis from NanoSight to study molecular machines.

Dr Daniela Wilson with her NanoSight systems at the Radboud University in the Netherlands.
Dr Daniela Wilson with her NanoSight systems at the Radboud University in the Netherlands.

Abstract:
NanoSight, leading manufacturers of unique nanoparticle characterization technology, report on how the Radboud University Nijmegen is applying nanoparticle tracking analysis for the characterization of self-assembled nanomotors.

Radboud University Nijmegen applies nanoparticle tracking analysis from NanoSight to study molecular machines.

Salisbury, UK | Posted on March 27th, 2012

The oldest city in the Netherlands has provided the home for the latest exciting development in nanotechnology. Jet-engined nano-size rockets may provide a solution for delivering drug packages in the human body. This is not science fiction; it is science fact! Nature Chemistry has published a paper outlining the latest work of Daniela A. Wilson, Roeland J. M. Nolte and Jan C. M. van Hest from the Institute for Molecules and Materials (IMM), Radboud University, Nijmegen.

Dr Daniela A. Wilson explains the work of the group. "Making a nanomotor has been a dream of many researchers in nanotechnology. From molecular machines to micron size self-propelling rods, our team has used a combination of bottom-up or top-down approaches taking years off synthetic work. We applied self-assembly as a tool just like the pieces of a puzzle. The only difference is that we allowed the building blocks make itself to form 350 nm sized motors. The next step was to prove the concept. Having constructed these sub-micron sized nanomotors, we could not use conventional microscopies to visualize them. For 350 nm size particles, we required a special technique and this is how we have come to be users of the NanoSight technique of nanoparticle tracking analysis, NTA. This tracks the motors one by one (in effect, particle-by-particle). We could even analyze their movement after the addition of their fuel (hydrogen peroxide)."

Dr Wilson continued: "Knowing the particle size was very important to establish the size distribution of our self-assembled nanomotors as well the entrapment of the catalytic particles inside the bowl shape structures. However, even more important for us was the ability to track the movement of the motors in the presence of the fuel. This provided the definitive proof of directed motion resulting from the fast discharge of oxygen."

Prior to using NTA, the IMM group used dynamic light scattering (DLS). While quite powerful to measure size, it did not provide the ability to track individual particles that was essential for this research. Furthermore, it was vital to be able to analyze particle movement in real time. NanoSight uses tracking and scattering information to provide the size of the particles as well as giving information about the purity of its components. Different refractive indexes materials within the same colloidal distribution will give different scattering and therefore the group is able to use that information to assess the purity and distribution of complex mixtures.

To find out about the company and to learn more about particle characterization using NanoSight's unique nanoparticle tracking analysis solutions, visit www.nanosight.com and register to receive the next issue of NanoTrail, the company's electronic newsletter.

####

About NanoSight
NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements assess the surface charge on particles. NTA's particle-by-particle methodology goes beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.

NanoSight's simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.

NanoSight has installed more than 400 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 300+ third party papers citing NanoSight results, consolidating NanoSight's leadership position in nanoparticle characterization.

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT UK
T +44(0)1980 676060
F +44(0)1980 624703


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © NanoSight

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Molecular Machines

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Self Assembly

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanomedicine

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project