Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Simple, cheap way to mass-produce graphene nanosheets: Researchers in South Korea and CWRU devise new process

Abstract:
Mixing a little dry ice and a simple industrial process cheaply mass-produces high-quality graphene nanosheets, researchers in South Korea and Case Western Reserve University report.

Simple, cheap way to mass-produce graphene nanosheets: Researchers in South Korea and CWRU devise new process

Cleveland, OH | Posted on March 26th, 2012

Graphene, which is made from graphite, the same stuff as "lead" in pencils, has been hailed as the most important synthetic material in a century. Sheets conduct electricity better than copper, heat better than any material known, are harder than diamonds yet stretch.

Scientists worldwide speculate graphene will revolutionize computing, electronics and medicine but the inability to mass-produce sheets has blocked widespread use.

A description of the new research will be published the week of March 26 in the online Early Edition of the Proceedings of the National Academy of Sciences. The story is embargoed until Monday, March 26, 2012 at 3 p.m. U.S. Eastern time

Jong-Beom Baek, professor and director of the Interdisciplinary School of Green Energy/Advanced Materials & Devices, Ulsan National Institute of Science and Technology, Ulsan, South Korea, led the effort.

"We have developed a low-cost, easier way to mass produce better graphene sheets than the current, widely-used method of acid oxidation, which requires the tedious application of toxic chemicals," said Liming Dai, professor of macromolecular science and engineering at Case Western Reserve and a co-author of the paper.

Here's how:

Researchers placed graphite and frozen carbon dioxide in a ball miller, which is a canister filled with stainless steel balls. The canister was turned for two days and the mechanical force produced flakes of graphite with edges essentially opened up to chemical interaction by carboxylic acid formed during the milling.

The carboxylated edges make the graphite soluble in a class of solvents called protic solvents, which include water and methanol, and another class called polar aprotic solvents, which includes dimethyl sulfoxide.

Once dispersed in a solvent, the flakes separate into graphene naonsheets of five or fewer layers.

To test whether the material would work in direct formation of molded objects for electronic applications, samples were compressed into pellets. In a comparison, these pellets were 688 times better at conducting electricity than pellets yielded from the acid oxidation of graphite.

After heating the pellets at 900 degrees Celsius for two hours, the edges of the ball-mill-derived sheets were decarboxylated, that is, the edges of the nanosheets became linked with strong hydrogen bonding to neighboring sheets, remaining cohesive. The compressed acid-oxidation pellet shattered during heating.

To form large-area graphene nanosheet films, a solution of solvent and the edge-carboxylated graphene nanosheets was cast on silicon wafers 3.5 centimeters by 5 centimeters, and heated to 900 degrees Celsius. Again, the heat decarboxylated the edges, which then bonded with edges of neighboring pieces. The researchers say this process is limited only by the size of the wafer. The electrical conductivity of the resultant large-area films, even at a high optical transmittance, was still much higher than that of their counterparts from the acid oxidation.

By using ammonia or sulfur trioxide as substitutes for dry ice and by using different solvents, "you can customize the edges for different applications," Baek said. "You can customize for electronics, supercapacitors, metal-free catalysts to replace platinum in fuel cells. You can customize the edges to assemble in two-dimensional and three-dimensional structures."

US-Korea NBIT, World Class University and Basic Research Laboratory programs through the National Research Foundation of Korea and the U.S, Air Force Office of Scientific Research funded the research.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Graphene/ Graphite

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Atomic scale pipes available on demand and by design September 9th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Military

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nano-lipid particles from edible ginger could improve drug delivery for colon cancer, study finds September 8th, 2016

3-D graphene has promise for bio applications: Rice University-led team welds nanoscale sheets to form tough, porous material September 7th, 2016

Nanodiamonds in an instant: Rice University-led team morphs nanotubes into tougher carbon for spacecraft, satellites September 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic