Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New technique lets scientists peer within nanoparticles, see atomic structure in 3-D

Inside a gold nanoparticle
Inside a gold nanoparticle

Abstract:
UCLA researchers are now able to peer deep within the world's tiniest structures to create three-dimensional images of individual atoms and their positions. Their research, published March 22 in the journal Nature, presents a new method for directly measuring the atomic structure of nanomaterials.

New technique lets scientists peer within nanoparticles, see atomic structure in 3-D

Los Angeles, CA | Posted on March 22nd, 2012

"This is the first experiment where we can directly see local structures in three dimensions at atomic-scale resolution — that's never been done before," said Jianwei (John) Miao, a professor of physics and astronomy and a researcher with the California NanoSystems Institute (CNSI) at UCLA.

Miao and his colleagues used a scanning transmission electron microscope to sweep a narrow beam of high-energy electrons over a tiny gold particle only 10 nanometers in diameter (almost 1,000 times smaller than a red blood cell). The nanoparticle contained tens of thousands of individual gold atoms, each about a million times smaller than the width of a human hair. These atoms interact with the electrons passing through the sample, casting shadows that hold information about the nanoparticle's interior structure onto a detector below the microscope.

Miao's team discovered that by taking measurements at 69 different angles, they could combine the data gleaned from each individual shadow into a 3-D reconstruction of the interior of the nanoparticle. Using this method, which is known as electron tomography, Miao's team was able to directly see individual atoms and how they were positioned inside the specific gold nanoparticle.

Presently, X-ray crystallography is the primary method for visualizing 3-D molecular structures at atomic resolutions. However, this method involves measuring many nearly identical samples and averaging the results. X-ray crystallography typically takes an average across trillions of molecules, which causes some information to get lost in the process, Miao said.

"It is like averaging together everyone on Earth to get an idea of what a human being looks like — you completely miss the unique characteristics of each individual," he said.

X-ray crystallography is a powerful technique for revealing the structure of perfect crystals, which are materials with an unbroken honeycomb of perfectly spaced atoms lined up as neatly as books on a shelf. Yet most structures existing in nature are non-crystalline, with structures far less ordered than their crystalline counterparts — picture a rock concert mosh pit rather than soldiers on parade.

"Our current technology is mainly based on crystal structures because we have ways to analyze them," Miao said. "But for non-crystalline structures, no direct experiments have seen atomic structures in three dimensions before."

Probing non-crystalline materials is important because even small variations in structure can greatly alter the electronic properties of a material, Miao noted. The ability to closely examine the inside of a semiconductor, for example, might reveal hidden internal flaws that could affect its performance.

"The three-dimensional atomic resolution of non-crystalline structures remains a major unresolved problem in the physical sciences," he said.

Miao and his colleagues haven't quite cracked the non-crystalline conundrum, but they have shown they can image a structure that isn't perfectly crystalline at a resolution of 2.4 angstroms (the average size of a gold atom is 2.8 angstroms). The gold nanoparticle they measured for their paper turned out to be composed of several different crystal grains, each forming a puzzle piece with atoms aligned in subtly different patterns. A nanostructure with hidden crystalline segments and boundaries inside will behave differently from one made of a single continuous crystal — but other techniques would have been unable to visualize them in three dimensions, Miao said.

Miao's team also found that the small golden blob they studied was in fact shaped like a multi-faceted gem, though slightly squashed on one side from resting on a flat stage inside the gigantic microscope — another small detail that might have been averaged away when using more traditional methods.

This project was inspired by Miao's earlier research, which involved finding ways to minimize the radiation dose administered to patients during CT scans. During a scan, patients must be X-rayed at a variety of angles, and those measurements are combined to give doctors a picture of what's inside the body. Miao found a mathematically more efficient way to obtain similar high-resolution images while taking scans at fewer angles. He later realized that this discovery could benefit scientists probing the insides of nanostructures, not just doctors on the lookout for tumors or fractures.

Nanostructures, like patients, can be damaged if too many scans are administered. A constant bombardment of high-energy electrons can cause the atoms in nanoparticles to be rearranged and the particle itself to change shape. By bringing his medical discovery to his work in materials science and nanoscience, Miao was able to invent a new way to peer inside the field's tiniest structures.

The discovery made by Miao's team may lead to improvements in resolution and image quality for tomography research across many fields, including the study of biological samples.

This research was conducted at CNSI's Electron Imaging Center for NanoMachines and funded by UC Discovery/Tomosoft Technologies. Tomosoft Technologies is a start-up company based on Miao's work.

Other UCLA co-authors included Chris Regan, an assistant professor of physics and astronomy and a CNSI researcher; graduate students Mary Scott, Chien-Chun Chen, Matthew Mecklenburg and Chun Zhu; and postdoctoral scholar Rui Xu. In particular, Chen and Scott played an important role in this work. Peter Ercius and Ulrich Dahmen from the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory are also co-authors.

####

About University of California - Los Angeles
UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

For more information, please click here

Contacts:
Kim DeRose

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project