Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers win grant to explore commercial potential of sensor technology

Abstract:
A new class of biomedical diagnostic devices are among the possible uses for the optical sensing technologies developed in Holger Schmidt's lab at UC Santa Cruz. To help Schmidt assess the commercial potential of his work, the National Science Foundation (NSF) has awarded his team a $50,000 Innovation Corps grant.

Researchers win grant to explore commercial potential of sensor technology

Santa Cruz, CA | Posted on March 22nd, 2012

In addition to the funding, Innovation Corps teams participate in a specially-designed training curriculum and receive guidance from private- and public-sector experts to begin assessing the commercial readiness of their technology concepts.

"We hope to gain a clear vision for our start-up company through talking to potential customers to find out what they really need and what type of molecular diagnostics we should be offering," said Schmidt, a professor of electrical engineering in the Baskin School of Engineering and director of the Keck Center for Nanoscale Optofluidics at UC Santa Cruz.

Over the past decade, Schmidt and his collaborators have been developing chip-based technology to optically detect single molecules without the need for high-end laboratory equipment. Their hollow-core optical waveguides can be integrated into chips using standard silicon fabrication technology, enabling light propagation through tiny volumes of liquids on a chip. Diagnostic instruments based on these "optofluidic chips" could provide a rapid, low-cost, and portable option for identifying specific disease-related molecules such as genomic nucleic acids (DNA or RNA). Applications could include rapid point-of-care detection of infectious diseases or monitoring of various biomarkers to facilitate diagnosis and treatment of chronic diseases.

Schmidt said the timing of the new grant is perfect. He and several of his long-term collaborators cofounded a company, LiquiLume Diagnostics, to commercialize their novel optofluidic technology, currently funded by a Small Business (SBIR) grant from NSF. The company's CEO, Philip Measor, obtained his B.S. and Ph.D. degrees in electrical engineering at UCSC and was a postdoctoral researcher in Schmidt's lab.

Schmidt's Innovation Corps team includes Measor and Robert Dunkle, CEO of the corporate advisory firm A.B.E.S. Partners. Dunkle has been advising Schmidt's group pro bono for several months as an "entrepreneur-in-residence" at QB3, the California Institute for Quantitative Biosciences, a multi-campus research institute with a strong program of industry partnerships and start-up support.

The Innovation Corps program selects up to 25 teams on a quarterly basis to assess the commercial viability of basic research previously supported by NSF. For more information, see the NSF Special Report on the program.

####

For more information, please click here

Contacts:
Tim Stephens
(831) 459-2495

Copyright © UC Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Sensors

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Announcements

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

How UEA research could help build computers from DNA August 19th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic