Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers win grant to explore commercial potential of sensor technology

Abstract:
A new class of biomedical diagnostic devices are among the possible uses for the optical sensing technologies developed in Holger Schmidt's lab at UC Santa Cruz. To help Schmidt assess the commercial potential of his work, the National Science Foundation (NSF) has awarded his team a $50,000 Innovation Corps grant.

Researchers win grant to explore commercial potential of sensor technology

Santa Cruz, CA | Posted on March 22nd, 2012

In addition to the funding, Innovation Corps teams participate in a specially-designed training curriculum and receive guidance from private- and public-sector experts to begin assessing the commercial readiness of their technology concepts.

"We hope to gain a clear vision for our start-up company through talking to potential customers to find out what they really need and what type of molecular diagnostics we should be offering," said Schmidt, a professor of electrical engineering in the Baskin School of Engineering and director of the Keck Center for Nanoscale Optofluidics at UC Santa Cruz.

Over the past decade, Schmidt and his collaborators have been developing chip-based technology to optically detect single molecules without the need for high-end laboratory equipment. Their hollow-core optical waveguides can be integrated into chips using standard silicon fabrication technology, enabling light propagation through tiny volumes of liquids on a chip. Diagnostic instruments based on these "optofluidic chips" could provide a rapid, low-cost, and portable option for identifying specific disease-related molecules such as genomic nucleic acids (DNA or RNA). Applications could include rapid point-of-care detection of infectious diseases or monitoring of various biomarkers to facilitate diagnosis and treatment of chronic diseases.

Schmidt said the timing of the new grant is perfect. He and several of his long-term collaborators cofounded a company, LiquiLume Diagnostics, to commercialize their novel optofluidic technology, currently funded by a Small Business (SBIR) grant from NSF. The company's CEO, Philip Measor, obtained his B.S. and Ph.D. degrees in electrical engineering at UCSC and was a postdoctoral researcher in Schmidt's lab.

Schmidt's Innovation Corps team includes Measor and Robert Dunkle, CEO of the corporate advisory firm A.B.E.S. Partners. Dunkle has been advising Schmidt's group pro bono for several months as an "entrepreneur-in-residence" at QB3, the California Institute for Quantitative Biosciences, a multi-campus research institute with a strong program of industry partnerships and start-up support.

The Innovation Corps program selects up to 25 teams on a quarterly basis to assess the commercial viability of basic research previously supported by NSF. For more information, see the NSF Special Report on the program.

####

For more information, please click here

Contacts:
Tim Stephens
(831) 459-2495

Copyright © UC Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Sensors

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Announcements

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic