Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers win grant to explore commercial potential of sensor technology

Abstract:
A new class of biomedical diagnostic devices are among the possible uses for the optical sensing technologies developed in Holger Schmidt's lab at UC Santa Cruz. To help Schmidt assess the commercial potential of his work, the National Science Foundation (NSF) has awarded his team a $50,000 Innovation Corps grant.

Researchers win grant to explore commercial potential of sensor technology

Santa Cruz, CA | Posted on March 22nd, 2012

In addition to the funding, Innovation Corps teams participate in a specially-designed training curriculum and receive guidance from private- and public-sector experts to begin assessing the commercial readiness of their technology concepts.

"We hope to gain a clear vision for our start-up company through talking to potential customers to find out what they really need and what type of molecular diagnostics we should be offering," said Schmidt, a professor of electrical engineering in the Baskin School of Engineering and director of the Keck Center for Nanoscale Optofluidics at UC Santa Cruz.

Over the past decade, Schmidt and his collaborators have been developing chip-based technology to optically detect single molecules without the need for high-end laboratory equipment. Their hollow-core optical waveguides can be integrated into chips using standard silicon fabrication technology, enabling light propagation through tiny volumes of liquids on a chip. Diagnostic instruments based on these "optofluidic chips" could provide a rapid, low-cost, and portable option for identifying specific disease-related molecules such as genomic nucleic acids (DNA or RNA). Applications could include rapid point-of-care detection of infectious diseases or monitoring of various biomarkers to facilitate diagnosis and treatment of chronic diseases.

Schmidt said the timing of the new grant is perfect. He and several of his long-term collaborators cofounded a company, LiquiLume Diagnostics, to commercialize their novel optofluidic technology, currently funded by a Small Business (SBIR) grant from NSF. The company's CEO, Philip Measor, obtained his B.S. and Ph.D. degrees in electrical engineering at UCSC and was a postdoctoral researcher in Schmidt's lab.

Schmidt's Innovation Corps team includes Measor and Robert Dunkle, CEO of the corporate advisory firm A.B.E.S. Partners. Dunkle has been advising Schmidt's group pro bono for several months as an "entrepreneur-in-residence" at QB3, the California Institute for Quantitative Biosciences, a multi-campus research institute with a strong program of industry partnerships and start-up support.

The Innovation Corps program selects up to 25 teams on a quarterly basis to assess the commercial viability of basic research previously supported by NSF. For more information, see the NSF Special Report on the program.

####

For more information, please click here

Contacts:
Tim Stephens
(831) 459-2495

Copyright © UC Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Sensors

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations April 21st, 2016

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it April 20th, 2016

Nano-magnets produce 3-dimensional images: Wide-view 3-dimensional holographic display composed of nano-magnetic pixels April 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic