Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Toyohashi Tech eNewsletter: graphene, bacteria, hard electronics, and pH imaging

Abstract:
Toyohashi Tech eNewsletter: From the invention of the pH imaging microscope to synthesis of graphene using bacteria to hard electronics, the Toyohashi Tech e-Newsletter describes a diverse range of research activities being undertaken by faculty at the Toyohashi University of Technology.

Toyohashi Tech eNewsletter: graphene, bacteria, hard electronics, and pH imaging

Toyohashi, Japan | Posted on March 22nd, 2012

This week Toyohashi Tech publishes the March 2012 issue of the e-Newsletter. The issue includes ‘Research Highlights' — easy-to-understand summaries of some of the top papers from researchers at the university — as well as news and views from one of Japan's most dynamic science and technology based universities.

In this issue's Research Highlights

www.tut.ac.jp/english/newsletter/research_highlights/index.html

Scientists produce graphene using microorganisms

www.tut.ac.jp/english/newsletter/research_highlights/research02.html

Here the Graphene Research Group at Toyohashi Tech report on the synthesis of graphene by reducing graphene oxide using microorganisms extracted from a local river.

Multimodal pH sensor: Fusion of heterogeneous biochemical information

www.tut.ac.jp/english/newsletter/research_highlights/research03.html

In this study, Hirokazu Nakazawa and colleagues describe a multimodal bio-image sensor that can render images of the two-dimensional distribution of proton concentration (pH) and fluorescence intensity for multimodal analyses of biochemical objects.

Graphene: Potential for modelling cell membrane systems

www.tut.ac.jp/english/newsletter/research_highlights/research04.html

Ryugo Tero and his colleagues in the Graphene Research Group at Toyohashi University of Technology have established a new procedure to fabricate artificial planar lipid membranes on graphene oxide (GO) and reduced graphene oxide (r-GO) as a means of detecting biomolecules such as lipids and proteins on and inside lipid bilayers.

Hard electronics: Hall magnetic field sensors for high temperatures and harmful radiation environments

www.tut.ac.jp/english/newsletter/research_highlights/research04.html

Toyohashi Tech researchers have fabricated Hall effect magnetic field sensors operable at least 400oC and in extreme radiation conditions using gallium nitride-based heterostructures a with two-dimensional electron gas.

In this issue's ‘Tech-Overtures' Tech Overtures: The Toyohashi Tech pH image sensor

www.tut.ac.jp/english/newsletter/tech_overtures/index.html

The pH image sensor was invented by Kazuaki Sawada of Toyohashi University of Technology. The device enables two dimensional visualization of both the pH and optical imaging of chemical activity of solutions and cell activity.

Other features of the Toyohashi Tech e-Newsletter include:

The invention and possibilities of the pH microscope

Kazuaki Sawada is the head of the Toyohashi Tech Venture Business Laboratory (VBL) and inventor of the ‘pH image sensor'. "We refer to the equipment housed in the VBL as the ‘LSI Factory', says Sawada. "The CMOS fabrication line housed in the LSI factory has been played a central role in the wide range of intelligent sensors and systems developed at Toyohashi Tech. We can start with an idea, design and produce masks, and then actually fabricate and test CMOS devices—we do not outsource any of these stages. The first CMOS chips for the pH image sensor were fabricated here."

www.tut.ac.jp/english/newsletter/features/index.html

News, events and activities of the university including:

Toyohashi Tech Kendo Club: You must be frightened to win

Toyohashi Tech International students visit Kyoto

G-COE: Frontiers of Intelligent Sensing Symposium

Toyohashi Tech delegation participates in the Japan Education Fair in Vietnam

####

About Toyohashi University of Technology (Toyohashi Tech)
Founded in 1976, Toyohashi University of Technology is a vibrant modern institute with research activities reflecting the modern era of advanced electronics, engineering, and life sciences.

About the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS):

EIIRIS is Toyohashi Tech’s new flagship research complex launched on 1st October 2010. "The aim of EIIRIS is to produce world-class innovative research," says President Yoshiyuki Sakaki. "To do this we are bringing together ambitious young researchers from diverse fields to collaborate on pioneering new frontiers in science such as brain/neuro-electronics as well as tackling some of the major issues mankind faces today: issues such as environmental changes and aging societies."

Website: www.eiiris.tut.ac.jp/index.html

For more information, please click here

Contacts:
Ms. Junko Sugaya and
Mr. Masashi Yamaguchi
International Affairs Division
TEL: (+81) 0532-44-2042; FAX: (+81)0532-44-6557

Copyright © Toyohashi University of Technology (Toyohashi Tech)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Graphene

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Graphenea sales more than double in 2014 January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Chemistry

Creating new materials with quantum effects for electronics January 29th, 2015

Imaging

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Nanobiotechnology

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE