Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Public University of Navarre researchers participate in project for design and manufacture of composite PVC materials based on nanofillings

Abstract:
Researchers at the Public University of Navarre (UPNA) are taking part in a project for the design and manufacture of composite PVC materials based on nanofillings, the aim being to control and optimise the photostability thermal resistance and the permeation of gases of the plastic material. Also involved in the project are the Compuestos y Granzas, S.A. (CYGSA) company and the L'Urederra Technological Centre. The project will last until December 2012.

Public University of Navarre researchers participate in project for design and manufacture of composite PVC materials based on nanofillings

Usurbil, Basque Country | Posted on March 21st, 2012

The project is to develop nanofilled polymer composite materials through the synthesis and treatment of nanoclays introduced into the matrix of the polymer.

In the first place the aim is to enhance the photostability properties of the polymers. Ultraviolet rays, responsible for the accelerated degradation of the polymers, cause discolouration and loss of performance of the material, thus shortening their useful life. Nanofilled polymer composites are developed through the synthesis and treatment of nanoclays incorporated into the matrix of the polymer. This incorporation of molecules capable of absorbing luminous radiation increases the resistance of the compound to UV radiation

The second objective was the enhancement of refractory properties. The nanofillers have the ability to act as mechanical reinforcements and, at the same time, as fire retardants, in such a way that the new materials can increase the thermal stability of the material, reducing the emission of gases in the case of combustion and halting the deterioration of mechanical properties which other fire retardants cause.

Finally, the improvement of permeation properties of materials means the development of new formulas with barrier properties for gases and low molecular weight volatile organic molecules thanks to the addition of the nanofillers. In this way reducing the diffusion of gases through the modified polymers will be achieved.

The members of the team involved in the project are lecturers at the Department of Applied Chemistry, Antonio Gil and Sophia A. Korili, and project assistant Saioa Albeniz.

####

For more information, please click here

Contacts:
Aitziber Lasa Iglesias

34-943-363-040

Ana Ollo Hualde
Nafarroako Unibertsitate Publikoa

(+34) 948 169033

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Internet reference:

Documents:

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Materials/Metamaterials

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project