Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Nanopower: Avoiding Electrolyte Failure in Nanoscale Lithum Batteries

Using a transmission electron microscope, NIST reearchers were able to watch individual nanosized batteries with electrolytes of different thicknesses charge and discharge. The NIST team discovered that there is likely a lower limit to how thin an electrolyte layer can be made before it causes the battery to malfunction.

Credit: Talin/NIST
Using a transmission electron microscope, NIST reearchers were able to watch individual nanosized batteries with electrolytes of different thicknesses charge and discharge. The NIST team discovered that there is likely a lower limit to how thin an electrolyte layer can be made before it causes the battery to malfunction.

Credit: Talin/NIST

Abstract:
It turns out you can be too thin—especially if you're a nanoscale battery. Researchers from the National Institute of Standards and Technology (NIST), the University of Maryland, College Park, and Sandia National Laboratories built a series of nanowire batteries to demonstrate that the thickness of the electrolyte layer can dramatically affect the performance of the battery, effectively setting a lower limit to the size of the tiny power sources.* The results are important because battery size and performance are key to the development of autonomous MEMS—microelectromechanical machines—which have potentially revolutionary applications in a wide range of fields.

Nanopower: Avoiding Electrolyte Failure in Nanoscale Lithum Batteries

Gaithersburg, MD | Posted on March 20th, 2012

MEMS devices, which can be as small as tens of micrometers (that is, roughly a tenth the width of a human hair), have been proposed for many applications in medicine and industrial monitoring, but they generally need a small, long-lived, fast-charging battery for a power source. Present battery technology makes it impossible to build these machines much smaller than a millimeter—most of which is the battery itself—which makes the devices terribly inefficient.

NIST researcher Alec Talin and his colleagues created a veritable forest of tiny—about 7 micrometers tall and 800 nanometers wide—solid-state lithium ion batteries to see just how small they could be made with existing materials and to test their performance.

Starting with silicon nanowires, the researchers deposited layers of metal (for a contact), cathode material, electrolyte, and anode materials with various thicknesses to form the miniature batteries. They used a transmission electron microscope (TEM) to observe the flow of current throughout the batteries and watch the materials inside them change as they charged and discharged.

The team found that when the thickness of the electrolyte film falls below a threshold of about 200 nanometers,** the electrons can jump the electrolyte border instead of flowing through the wire to the device and on to the cathode. Electrons taking the short way through the electrolyte—a short circuit—cause the electrolyte to break down and the battery to quickly discharge.

"What isn't clear is exactly why the electrolyte breaks down," says Talin. "But what is clear is that we need to develop a new electrolyte if we are going to construct smaller batteries. The predominant material, LiPON, just won't work at the thicknesses necessary to make practical high-energy-density rechargeable batteries for autonomous MEMS."

*D. Ruzmetov, V.P. Oleshko, P.M. Haney, H.J. Lezec, K. Karki, K.H. Baloch, A.K. Agrawal, A.V. Davydov, S. Krylyuk, Y. Liu, J. Huang, M. Tanase, J. Cumings and A.A. Talin. Electrolyte stability determines scaling limits for solid-state 3D Li-ion batteries, Nano Letters 12, 505-511 (2011).

** Represents the group's latest data collected after publication of the paper cited above.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Mark Esser
301-975-8735

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

MEMS

STMicroelectronics Earns MEMS Manufacturer of the Year Award August 1st, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

New research unveils graphene 'moth eyes' to power future smart technologies: New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications March 1st, 2016

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

Discoveries

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

Iowa State scientists develop quick-destructing battery to power 'transient' devices August 8th, 2016

Stanford-led team reveals nanoscale secrets of rechargeable batteries August 8th, 2016

Research partnerships

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic