Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Combining Centuries-Old Mathematical Theorems Provides an Efficient Approach for Characterizing the Shape of Nanoparticles

Abstract:
Gregg Gallatin, a researcher at the NIST Center for Nanoscale Science and Technology, has shown that combining a nineteenth century flux theorem with an eighteenth century mathematical operation provides a convenient technique for using scattered light to count nanoparticles and to characterize their shapes.*

Combining Centuries-Old Mathematical Theorems Provides an Efficient Approach for Characterizing the Shape of Nanoparticles

Gaithersburg, MD | Posted on March 20th, 2012

This technique is useful both for determining how a given distribution of nanoparticle shapes affects the properties of nanoparticle functionalized materials as well as for categorizing how biological systems incorporate nanoparticles of different shapes. The mathematical approach, which combines Gauss's Law with Fourier transforms, can also be used as a starting point to solve a wide variety of standard problems in mathematics and physics beyond nanotechnology. Because of the ubiquity of digital data derived from Fourier transforms, the approach is likely to find broad application to a range of physical science and engineering measurements. Using the technique, Gallatin demonstrates how Porod's law, which describes how x-rays scatter from small spherically-shaped particles, can be re-derived and extended to the broader case of particles that are nonspherical, thereby providing a powerful and useful approach for determining the shape of nanoparticles using x-ray scattering. He then demonstrates that this approach can be further extended to visible light scattering, which depends on the moments of the nanoparticle shape and therefore provides a more general method for measuring nanoparticle shape from scattering data. The technique of combining Gauss's Law with Fourier transforms can also be applied to the classical physics problem of Fraunhofer diffraction, providing an explicit formula for the diffraction pattern of arbitrary polygonal-shaped openings in an opaque screen in terms of the vertices of the polygon. It is also applicable to a variety of mathematics problems, including the Hopf Umlaufsatz, which states that the angle of the tangent along a simple smooth closed curve turns by 360 degrees when making a complete circuit around the curve; Stokes' Law, which relates integrals over an area in two dimensions to the one dimensional curve bounding the area; and the isoperimetric inequality, which states that a circle is the shape that encloses the largest area for a given circumference. Given the simplicity and generality of this mathematical technique, Gallatin believes that it can be applied to many other problems as well.


*Fourier, Gauss, Fraunhofer, Porod and the shape from moments problem, G. M. Gallatin, Journal of Mathematical Physics 53, 013509-013509-13 (2012).

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Gregg Gallatin
301-975-2140

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Physics

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Researchers refine method for detecting quantum entanglement June 18th, 2016

Efficient hydrogen production made easy: Sticking electrons to a semiconductor with hydrazine creates an electrocatalyst June 17th, 2016

Laboratories

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discovery of gold nanocluster 'double' hints at other shape-changing particles: New analysis approach brings two unique atomic structures into focus June 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic